Publication:
Dynamical investigation of time-fractional order Phi-4 equations

dc.contributor.authorYounas H.M., Iqbal S., Siddique I., Kaabar M.K.A., Kaplan M.
dc.contributor.authorYounas, HM, Iqbal, S, Siddique, I, Kaabar, MKA, Kaplan, M
dc.date.accessioned2023-05-09T11:39:37Z
dc.date.available2023-05-09T11:39:37Z
dc.date.issued2022-04-01
dc.date.issued2022.01.01
dc.description.abstractIn this manuscript, Optimal Homotopy Asymptotic Method (OHAM) is used to find the approximate solutions of time fractional Phi-4 nonlinear partial differential equations. Approximate first order results are acquired through OHAM and are compared with the exact solutions. It has been noticed that the obtained results from OHAM have large convergence rate for time-Fractional Order Partial Differential Equations. The solutions are plotted and therelative errors are tabulated.
dc.identifier.doi10.1007/s11082-022-03562-6
dc.identifier.eissn1572-817X
dc.identifier.issn0306-8919
dc.identifier.scopus2-s2.0-85126181549
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12022
dc.identifier.volume54
dc.identifier.wosWOS:000768434000013
dc.relation.ispartofOptical and Quantum Electronics
dc.relation.ispartofOPTICAL AND QUANTUM ELECTRONICS
dc.rightsfalse
dc.subjectApproximate solutions | Fractional calculus | Optimal homotopy asymptotic method | Time-fractional order Phi-4 partial differential equations
dc.titleDynamical investigation of time-fractional order Phi-4 equations
dc.titleDynamical investigation of time-fractional order Phi-4 equations
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue4
oaire.citation.volume54
relation.isScopusOfPublicationa1966a89-0d2b-4577-a1f9-2d2066cac6fc
relation.isScopusOfPublication.latestForDiscoverya1966a89-0d2b-4577-a1f9-2d2066cac6fc
relation.isWosOfPublication699c7ed4-7035-460b-bd7d-00167dadbd39
relation.isWosOfPublication.latestForDiscovery699c7ed4-7035-460b-bd7d-00167dadbd39

Files

Collections