Publication:
Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials

dc.contributor.authorYildizel S., Tuskan Y., Kaplan G.
dc.contributor.authorYildizel, SA, Tuskan, Y, Kaplan, G
dc.date.accessioned2023-05-09T18:36:48Z
dc.date.available2023-05-09T18:36:48Z
dc.date.issued2017-01-01
dc.date.issued2017.01.01
dc.description.abstractThis research focuses on the use of adaptive artificial neural network system for evaluating the skid resistance value (British Pendulum Number; BPN) of the glass fiber-reinforced tiling materials. During the creation of the neural model, four main factors were considered: fiber, calcium carbonate content, sand blasting, and polishing properties of the specimens. The model was trained, tested, and compared with the on-site test results. As per the comparison of the outcomes of the study, the analysis and on-site test results showed that there is a great potential for the prediction of BPN of glass fiber-reinforced tiling materials by using developed neural system.
dc.identifier.doi10.1155/2017/7620187
dc.identifier.eissn1687-8094
dc.identifier.issn1687-8086
dc.identifier.scopus2-s2.0-85042098170
dc.identifier.urihttps://hdl.handle.net/20.500.12597/13477
dc.identifier.volume2017
dc.identifier.wosWOS:000418961700001
dc.relation.ispartofAdvances in Civil Engineering
dc.relation.ispartofADVANCES IN CIVIL ENGINEERING
dc.rightstrue
dc.titlePrediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials
dc.titlePrediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume2017
relation.isScopusOfPublication44a534f9-0d32-4d93-bcdb-876861588a97
relation.isScopusOfPublication.latestForDiscovery44a534f9-0d32-4d93-bcdb-876861588a97
relation.isWosOfPublication66faf118-a5d2-4d25-8379-9773e74f3860
relation.isWosOfPublication.latestForDiscovery66faf118-a5d2-4d25-8379-9773e74f3860

Files

Collections