Publication: Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials
dc.contributor.author | Yildizel S., Tuskan Y., Kaplan G. | |
dc.contributor.author | Yildizel, SA, Tuskan, Y, Kaplan, G | |
dc.date.accessioned | 2023-05-09T18:36:48Z | |
dc.date.available | 2023-05-09T18:36:48Z | |
dc.date.issued | 2017-01-01 | |
dc.date.issued | 2017.01.01 | |
dc.description.abstract | This research focuses on the use of adaptive artificial neural network system for evaluating the skid resistance value (British Pendulum Number; BPN) of the glass fiber-reinforced tiling materials. During the creation of the neural model, four main factors were considered: fiber, calcium carbonate content, sand blasting, and polishing properties of the specimens. The model was trained, tested, and compared with the on-site test results. As per the comparison of the outcomes of the study, the analysis and on-site test results showed that there is a great potential for the prediction of BPN of glass fiber-reinforced tiling materials by using developed neural system. | |
dc.identifier.doi | 10.1155/2017/7620187 | |
dc.identifier.eissn | 1687-8094 | |
dc.identifier.issn | 1687-8086 | |
dc.identifier.scopus | 2-s2.0-85042098170 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12597/13477 | |
dc.identifier.volume | 2017 | |
dc.identifier.wos | WOS:000418961700001 | |
dc.relation.ispartof | Advances in Civil Engineering | |
dc.relation.ispartof | ADVANCES IN CIVIL ENGINEERING | |
dc.rights | true | |
dc.title | Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials | |
dc.title | Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials | |
dc.type | Article | |
dspace.entity.type | Publication | |
oaire.citation.volume | 2017 | |
relation.isScopusOfPublication | 44a534f9-0d32-4d93-bcdb-876861588a97 | |
relation.isScopusOfPublication.latestForDiscovery | 44a534f9-0d32-4d93-bcdb-876861588a97 | |
relation.isWosOfPublication | 66faf118-a5d2-4d25-8379-9773e74f3860 | |
relation.isWosOfPublication.latestForDiscovery | 66faf118-a5d2-4d25-8379-9773e74f3860 |