Publication:
Prediction of soil-bearing capacity on forest roads by statistical approaches.

dc.contributor.authorVarol, Tugrul, Ozel, Halil Baris, Ertugrul, Mertol, Emir, Tuna, Tunay, Metin, Cetin, Mehmet, Sevik, Hakan
dc.contributor.authorVarol, T, Ozel, HB, Ertugrul, M, Emir, T, Tunay, M, Cetin, M, Sevik, H
dc.date.accessioned2023-05-09T15:40:25Z
dc.date.available2023-05-09T15:40:25Z
dc.date.issued2021-07-28T00:00:00Z
dc.date.issued2021.01.01
dc.description.abstractThe soil-bearing capacity is one of the important criteria in dimensioning the superstructure. In Turkey, predictability of California Bearing Ratio values, which may be used in the planning and dimensioning of forest roads, of which about 26% lacks the superstructure, by using soil mechanical properties (cost and time efficient parameters that are easier to determine) is investigated. Simple linear regression, multiple linear regression, artificial neural networks and adaptive network-based fuzzy inference system methods were utilized. Two hundred sixty-four California Bearing Ratio values obtained from the project carried out on the forest roads of Bartin Forest Operation Directorate were used in both the production of training-test data and the creation of models. Statistical performance of the models was assessed by means of parameters such as root-mean-square error, mean absolute error and R. The obtained results show that the bearing capacity values predicted by artificial neural networks and adaptive network based fuzzy inference system models display significantly better performance than the simple linear regression and multiple linear regression models. While the highest prediction capacity belongs to adaptive network based fuzzy inference system (0.969-0.991), it is followed by artificial neural networks (R = 0.796-0.974), multiple linear regression (R = 0.796) and simple linear regression (R = 0.554). What makes the algorithms superior than the traditional statistical models is the fact that they have many processing neurons, each with local connections, and thus have higher error tolerance. On the other hand, for the forest and rural roads, which play an important role in rural development of the forest peasants, to be able to operate all-seasons, superstructure should be immediately built in order to minimize the wear on the roads.
dc.identifier.doi10.1007/s10661-021-09335-0
dc.identifier.eissn1573-2959
dc.identifier.issn0167-6369
dc.identifier.pubmed34322755
dc.identifier.scopus2-s2.0-85111534662
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12487
dc.identifier.volume193
dc.identifier.wosWOS:000691485700003
dc.relation.ispartofEnvironmental Monitoring and Assessment
dc.relation.ispartofENVIRONMENTAL MONITORING AND ASSESSMENT
dc.rightsfalse
dc.subjectArtificial neural network
dc.titlePrediction of soil-bearing capacity on forest roads by statistical approaches.
dc.titlePrediction of soil-bearing capacity on forest roads by statistical approaches
dc.typeJournal Article
dspace.entity.typePublication
oaire.citation.issue8
oaire.citation.volume193
relation.isPubmedOfPublication5ef1e12e-303f-49eb-b218-5a29483c0bf5
relation.isPubmedOfPublication.latestForDiscovery5ef1e12e-303f-49eb-b218-5a29483c0bf5
relation.isScopusOfPublication17418727-de06-4cc0-a746-168efd002206
relation.isScopusOfPublication.latestForDiscovery17418727-de06-4cc0-a746-168efd002206
relation.isWosOfPublication3c4fe207-3b75-4e88-85cd-2c33b82d1268
relation.isWosOfPublication.latestForDiscovery3c4fe207-3b75-4e88-85cd-2c33b82d1268

Files

Collections