Publication:
A variational technique for optimal boundary control in a hyperbolic problem

dc.contributor.authorSubai M., Sara Y., Kaar A.
dc.contributor.authorSubasi, M, Sarac, Y, Kacar, A
dc.date.accessioned2023-05-09T15:55:18Z
dc.date.available2023-05-09T15:55:18Z
dc.date.issued2012-02-15
dc.date.issued2012.01.01
dc.description.abstractWe investigate the problem of controlling the boundary functions in a one dimensional hyperbolic problem by minimizing the functional including the final state. After proving the existence and uniqueness of the solution to the given optimal control problem, we get the Frechet differential of the functional and give the necessary condition to the optimal solution in the form of the variational inequality via the solution of the adjoint problem. We constitute a minimizing sequence by the method of projection of the gradient and prove its convergence to the optimal solution. © 2011 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.amc.2011.12.053
dc.identifier.endpage6636
dc.identifier.issn0096-3003
dc.identifier.scopus2-s2.0-84856398987
dc.identifier.startpage6629
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12740
dc.identifier.volume218
dc.identifier.wosWOS:000299847700001
dc.relation.ispartofApplied Mathematics and Computation
dc.relation.ispartofAPPLIED MATHEMATICS AND COMPUTATION
dc.rightsfalse
dc.subjectHyperbolic problem | Optimal boundary control | Variational methods
dc.titleA variational technique for optimal boundary control in a hyperbolic problem
dc.titleA variational technique for optimal boundary control in a hyperbolic problem
dc.typeReview
dspace.entity.typePublication
oaire.citation.issue12
oaire.citation.volume218
relation.isScopusOfPublication13a4851c-c781-450f-8de1-b23a54a15da7
relation.isScopusOfPublication.latestForDiscovery13a4851c-c781-450f-8de1-b23a54a15da7
relation.isWosOfPublicatione27c7c9a-7379-4801-9155-4ff9c1e77685
relation.isWosOfPublication.latestForDiscoverye27c7c9a-7379-4801-9155-4ff9c1e77685

Files

Collections