Publication:
A Discrete Boundary Value Problem with Point Interaction

dc.contributor.authorAygar Y., Koprubasi T.
dc.date.accessioned2023-05-09T19:43:49Z
dc.date.available2023-05-09T19:43:49Z
dc.date.issued2022-01-01
dc.description.abstractThis paper is concerned with a boundary value problem (BVP) for discrete Sturm-Liouville equation with point interaction and boundary conditions depending on a hyperbolic eigenvalue parameter. This paper presents some spectral and scattering properties of this BVP in terms of Jost solution, scattering solutions, scattering function, continuous and discrete spectrum. In addition, the resolvent operator of the BVP is obtained to get the properties of eigenvalues. Furthermore, an example is considered as a special case of the main problem to demonstrate the effectiveness of our results.
dc.identifier.doi10.2298/FIL2218279A
dc.identifier.scopus2-s2.0-85146640321
dc.identifier.urihttps://hdl.handle.net/20.500.12597/14316
dc.relation.ispartofFilomat
dc.rightsfalse
dc.subjectEigenvalue | Point interaction | Resolvent operator | Scattering function | Scattering solution
dc.titleA Discrete Boundary Value Problem with Point Interaction
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue18
oaire.citation.volume36
relation.isScopusOfPublication37cd9d4f-094f-48fa-8531-2844fbf0ceca
relation.isScopusOfPublication.latestForDiscovery37cd9d4f-094f-48fa-8531-2844fbf0ceca

Files

Collections