Publication:
A sufficient connectivity condition for rigidity and global rigidity of linearly constrained frameworks in R<sup>2</sup>

dc.contributor.authorGuler H.
dc.contributor.authorGuler, H
dc.date.accessioned2023-05-08T22:54:38Z
dc.date.available2023-05-08T22:54:38Z
dc.date.issued2023-02-15
dc.date.issued2023.01.01
dc.description.abstractWe study the bar-and-joint frameworks in R2 such that some vertices are constrained to lie on some lines. The generic rigidity of such frameworks is characterised by Streinu and Theran (2010). Katoh and Tanigawa (2013) remarked that the corresponding matroid and its rank function can be characterised by using a submodular function. In this paper, we will transfer this characterisation of the rank function to the form of the value of a “1-thin cover” and obtain a sufficient connectivity condition for rigidity and global rigidity of these frameworks analogous to the results of Lovász and Yemini (1982).
dc.identifier.doi10.1016/j.dam.2022.11.002
dc.identifier.eissn1872-6771
dc.identifier.endpage46
dc.identifier.issn0166-218X
dc.identifier.scopus2-s2.0-85143327162
dc.identifier.startpage37
dc.identifier.urihttps://hdl.handle.net/20.500.12597/11785
dc.identifier.volume326
dc.identifier.wosWOS:000895753900004
dc.relation.ispartofDiscrete Applied Mathematics
dc.relation.ispartofDISCRETE APPLIED MATHEMATICS
dc.rightsfalse
dc.subjectCount matroid | Linearly constrained framework | Rigidity | Sliders
dc.titleA sufficient connectivity condition for rigidity and global rigidity of linearly constrained frameworks in R<sup>2</sup>
dc.titleA sufficient connectivity condition for rigidity and global rigidity of linearly constrained frameworks in R2
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume326
relation.isScopusOfPublication6e79f2c7-4673-4cd5-9bc4-a461f41d50cb
relation.isScopusOfPublication.latestForDiscovery6e79f2c7-4673-4cd5-9bc4-a461f41d50cb
relation.isWosOfPublicationfaa318ff-1cdb-482c-8594-c62ba9afcb6e
relation.isWosOfPublication.latestForDiscoveryfaa318ff-1cdb-482c-8594-c62ba9afcb6e

Files

Collections