Publication: New generalizations of Fibonacci and Lucas sequences
| dc.contributor.author | Bilgici G. | |
| dc.date.accessioned | 2023-05-09T18:42:52Z | |
| dc.date.available | 2023-05-09T18:42:52Z | |
| dc.date.issued | 2014-01-01 | |
| dc.description.abstract | We consider the sequences {fn}∞n=0 and {ln}∞n=0 which are generated bythe recurrence relations fn=2afn-1+(b2-a)fn-2 and ln=2aln-1+(b2-a)ln-2 with the initial conditions f0=0, f1=1 and l0=2, l1=2a where a and b are any non - zero real numbers. We obtain generating functions, Binet formulas for these two sequences and give generalizations of some well - known identities. | |
| dc.identifier.doi | 10.12988/ams.2014.4162 | |
| dc.identifier.scopus | 2-s2.0-84898862578 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/13585 | |
| dc.relation.ispartof | Applied Mathematical Sciences | |
| dc.rights | false | |
| dc.subject | Fibonacci sequence | Lucas sequence | Pell - lucas sequence | Pell sequence | |
| dc.title | New generalizations of Fibonacci and Lucas sequences | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| oaire.citation.issue | 29-32 | |
| relation.isScopusOfPublication | e5e10d55-854e-44b2-9338-6400da8d6e9a | |
| relation.isScopusOfPublication.latestForDiscovery | e5e10d55-854e-44b2-9338-6400da8d6e9a |
