Publication:
Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter

dc.contributor.authorYokus N., Koprubasi T.
dc.contributor.authorYokus, N, Koprubasi, T
dc.date.accessioned2023-05-09T18:40:53Z
dc.date.available2023-05-09T18:40:53Z
dc.date.issued2015-01-01
dc.date.issued2015.01.01
dc.description.abstractIn this paper, we consider the operator L generated in L2 (R+) by the Sturm-Liouville equation (formula presented), and the boundary condition (formula presented), where q is a complex-valued function, (formula presented) is an eigenparameter. Under the conditions(formula presented), using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.
dc.identifier.doi10.1186/s13660-015-0563-1
dc.identifier.issn1029-242X
dc.identifier.scopus2-s2.0-84961348279
dc.identifier.urihttps://hdl.handle.net/20.500.12597/13549
dc.identifier.wosWOS:000349235300007
dc.relation.ispartofJournal of Inequalities and Applications
dc.relation.ispartofJOURNAL OF INEQUALITIES AND APPLICATIONS
dc.rightstrue
dc.subjecteigenparameter | eigenvalues | spectral singularities | Sturm-Liouville equations
dc.titleSpectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter
dc.titleSpectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume2015
relation.isScopusOfPublicationa986cd21-c989-445e-916a-2c35351d3b49
relation.isScopusOfPublication.latestForDiscoverya986cd21-c989-445e-916a-2c35351d3b49
relation.isWosOfPublicationfb89f12f-b87e-4b15-981b-585f95e9a3db
relation.isWosOfPublication.latestForDiscoveryfb89f12f-b87e-4b15-981b-585f95e9a3db

Files

Collections