Publication:
Stability criteria for volterra type linear nabla fractional difference equations

dc.contributor.authorGevgeşoğlu M., Bolat Y.
dc.contributor.authorGevgesoglu, M, Bolat, Y
dc.date.accessioned2023-05-09T11:43:00Z
dc.date.available2023-05-09T11:43:00Z
dc.date.issued2022-12-01
dc.date.issued2022.01.01
dc.description.abstractIn this study, we give some necessary and sufficient conditions on the stability for Volterra type linear nabla fractional difference equations of the form ∇-1vx(t)=λx(t),t∈ N1, with initial condition ∇-1v-1x(t)|t=0=x0.For this, first of all we show that the above equation is a convolution-type Volterra equation, then give the stability conditions by using the stability analysis methods of the convolution type Volterra equations. Also we give some examples to illustrate our theoretic results.
dc.identifier.doi10.1007/s12190-021-01696-6
dc.identifier.eissn1865-2085
dc.identifier.endpage4171
dc.identifier.issn1598-5865
dc.identifier.scopus2-s2.0-85123207094
dc.identifier.startpage4161
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12065
dc.identifier.volume68
dc.identifier.wosWOS:000744393800001
dc.relation.ispartofJournal of Applied Mathematics and Computing
dc.relation.ispartofJOURNAL OF APPLIED MATHEMATICS AND COMPUTING
dc.rightsfalse
dc.subjectNabla fractional difference equations | Stability | Volterra difference equations
dc.titleStability criteria for volterra type linear nabla fractional difference equations
dc.titleStability criteria for volterra type linear nabla fractional difference equations
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue6
oaire.citation.volume68
relation.isScopusOfPublication321fdde2-f2b7-42db-bc10-7de22545a341
relation.isScopusOfPublication.latestForDiscovery321fdde2-f2b7-42db-bc10-7de22545a341
relation.isWosOfPublication4329844f-b6ca-4e9d-8b80-914e1beb34e6
relation.isWosOfPublication.latestForDiscovery4329844f-b6ca-4e9d-8b80-914e1beb34e6

Files

Collections