Publication:
Some unrestricted fibonacci and lucas hyper-complex numbers

dc.contributor.authorBilgici G., Daşdemir A.
dc.contributor.authorBilgici, G, Dasdemir, A
dc.date.accessioned2023-05-09T18:41:27Z
dc.date.available2023-05-09T18:41:27Z
dc.date.issued2020-01-01
dc.date.issued2020.01.01
dc.description.abstractA number of studies have investigated the Fibonacci quater-nions and octonions that include consecutive terms of the Fibonacci sequence. This paper presents a new generalization of Fibonacci quater-nions, octonions and sedenions, where non-consecutive Fibonacci numbers are used. We present the Binet formulas, generating functions and some identities for these new types of hyper-complex numbers.
dc.identifier.doi10.12697/ACUTM.2020.24.03
dc.identifier.eissn2228-4699
dc.identifier.endpage48
dc.identifier.issn1406-2283
dc.identifier.scopus2-s2.0-85091383829
dc.identifier.startpage37
dc.identifier.urihttps://hdl.handle.net/20.500.12597/13559
dc.identifier.volume24
dc.identifier.wosWOS:000575207200003
dc.relation.ispartofActa et Commentationes Universitatis Tartuensis de Mathematica
dc.relation.ispartofACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
dc.rightstrue
dc.subjectFibonacci octonion | Fibonacci quaternion | Fibonacci sedenion
dc.titleSome unrestricted fibonacci and lucas hyper-complex numbers
dc.titleSome unrestricted Fibonacci and Lucas hyper-complex numbers
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume24
relation.isScopusOfPublicationedba5f4b-57c3-444d-b55d-aa1db467f39e
relation.isScopusOfPublication.latestForDiscoveryedba5f4b-57c3-444d-b55d-aa1db467f39e
relation.isWosOfPublication6de6f3af-712b-4b4e-8cbd-a1c8aeaa664c
relation.isWosOfPublication.latestForDiscovery6de6f3af-712b-4b4e-8cbd-a1c8aeaa664c

Files

Collections