Yayın:
Some congruences for modulus 13 related to partition generating function

dc.contributor.authorGöksal, Bilgici
dc.contributor.authorA. Bülent, Ekin
dc.date.accessioned2026-01-02T23:04:21Z
dc.date.issued2013-12-31
dc.description.abstractLet \(p(n)\) be the classical partition function, i.e., the number of non-increasing sequences of positive integers whose sum is \(n\). Let \[ F^{(k,m)} =q^k \sum_{n=0}^\infty p(mn+k) y^{n},\quad (z; q)_\infty =\prod_{n=1}^\infty (1-zq^{n-1} ), \] \[ P(0)=(y^m; y^m)_\infty , \quad P(a)= (y^a; y^m)_\infty (y^{m-a}; y^m)_\infty \text{ if } m\nmid a, \] where \(y=q^m\). In this paper, using Kolberg's method, the authors give congruences for \(F^{(k,13)}\) modulo \(13\) for all \(0\leq k\leq 12\). For example, \[ F^{(0,13)}\equiv y\frac{P(2)}{P(4)}\left\{ \frac{P(0)P(6)}{yP(1)P(3)}-4(y; y)^{11}_{\infty} \right\} \pmod{13} . \]
dc.description.urihttps://doi.org/10.1007/s11139-013-9537-4
dc.description.urihttps://zbmath.org/6348206
dc.description.urihttps://dx.doi.org/10.1007/s11139-013-9537-4
dc.identifier.doi10.1007/s11139-013-9537-4
dc.identifier.eissn1572-9303
dc.identifier.endpage218
dc.identifier.issn1382-4090
dc.identifier.openairedoi_dedup___::85fdcecaf63a90f131b47716844f9c1e
dc.identifier.orcid0000-0001-9964-5578
dc.identifier.scopus2-s2.0-84893917864
dc.identifier.startpage197
dc.identifier.urihttps://hdl.handle.net/20.500.12597/35764
dc.identifier.volume33
dc.identifier.wos000331720800002
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofThe Ramanujan Journal
dc.rightsCLOSED
dc.subjectPartitions
dc.subjectcongruences and congruential restrictions
dc.subject\(q\)-equivalence
dc.subjectPartition identities
dc.subjectidentities of Rogers-Ramanujan type
dc.subjectpartition
dc.subjectpartition generating function
dc.titleSome congruences for modulus 13 related to partition generating function
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Bilgici, Göksal","name":"Bilgici","surname":"Göksal","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9964-5578"},"provenance":null}},{"fullName":"Ekin, A. Bülent","name":"Ekin","surname":"A. Bülent","rank":2,"pid":null}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Partitions; congruences and congruential restrictions"},"provenance":null},{"subject":{"scheme":"keyword","value":"\\(q\\)-equivalence"},"provenance":null},{"subject":{"scheme":"keyword","value":"Partition identities; identities of Rogers-Ramanujan type"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"partition"},"provenance":null},{"subject":{"scheme":"keyword","value":"partition generating function"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"Some congruences for modulus 13 related to partition generating function","subTitle":null,"descriptions":["Let \\(p(n)\\) be the classical partition function, i.e., the number of non-increasing sequences of positive integers whose sum is \\(n\\). Let \\[ F^{(k,m)} =q^k \\sum_{n=0}^\\infty p(mn+k) y^{n},\\quad (z; q)_\\infty =\\prod_{n=1}^\\infty (1-zq^{n-1} ), \\] \\[ P(0)=(y^m; y^m)_\\infty , \\quad P(a)= (y^a; y^m)_\\infty (y^{m-a}; y^m)_\\infty \\text{ if } m\\nmid a, \\] where \\(y=q^m\\). In this paper, using Kolberg's method, the authors give congruences for \\(F^{(k,13)}\\) modulo \\(13\\) for all \\(0\\leq k\\leq 12\\). For example, \\[ F^{(0,13)}\\equiv y\\frac{P(2)}{P(4)}\\left\\{ \\frac{P(0)P(6)}{yP(1)P(3)}-4(y; y)^{11}_{\\infty} \\right\\} \\pmod{13} . \\]"],"publicationDate":"2013-12-31","publisher":"Springer Science and Business Media LLC","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"The Ramanujan Journal","issnPrinted":"1382-4090","issnOnline":"1572-9303","issnLinking":null,"ep":"218","iss":null,"sp":"197","vol":"33","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::85fdcecaf63a90f131b47716844f9c1e","originalIds":["9537","10.1007/s11139-013-9537-4","50|doiboost____|85fdcecaf63a90f131b47716844f9c1e","oai:zbmath.org:6348206","50|c2b0b933574d::063c4dcc6c08ee0f4ce625789da62a59","2075632469"],"pids":[{"scheme":"doi","value":"10.1007/s11139-013-9537-4"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":3,"influence":3.070649e-9,"popularity":7.889512e-10,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1007/s11139-013-9537-4"}],"license":"Springer TDM","type":"Article","urls":["https://doi.org/10.1007/s11139-013-9537-4"],"publicationDate":"2013-12-31","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1007/s11139-013-9537-4"}],"type":"Article","urls":["https://doi.org/10.1007/s11139-013-9537-4","https://zbmath.org/6348206"],"publicationDate":"2014-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1007/s11139-013-9537-4"},{"scheme":"mag_id","value":"2075632469"}],"type":"Article","urls":["https://dx.doi.org/10.1007/s11139-013-9537-4"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar