Yayın:
Some congruences for modulus 13 related to partition generating function

Placeholder

Akademik Birimler

item.page.program

item.page.orgauthor

item.page.kuauthor

item.page.coauthor

Danışman

item.page.language

item.page.type

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Let \(p(n)\) be the classical partition function, i.e., the number of non-increasing sequences of positive integers whose sum is \(n\). Let \[ F^{(k,m)} =q^k \sum_{n=0}^\infty p(mn+k) y^{n},\quad (z; q)_\infty =\prod_{n=1}^\infty (1-zq^{n-1} ), \] \[ P(0)=(y^m; y^m)_\infty , \quad P(a)= (y^a; y^m)_\infty (y^{m-a}; y^m)_\infty \text{ if } m\nmid a, \] where \(y=q^m\). In this paper, using Kolberg's method, the authors give congruences for \(F^{(k,13)}\) modulo \(13\) for all \(0\leq k\leq 12\). For example, \[ F^{(0,13)}\equiv y\frac{P(2)}{P(4)}\left\{ \frac{P(0)P(6)}{yP(1)P(3)}-4(y; y)^{11}_{\infty} \right\} \pmod{13} . \]

Açıklama

item.page.source

Yayınevi

Springer Science and Business Media LLC

item.page.keywords

Alıntı

Koleksiyonlar

Endorsement

Review

item.page.supplemented

item.page.referenced

0

Views

0

Downloads

View PlumX Details


İlişkili Sürdürülebilir Kalkınma Hedefleri