Yayın: Some congruences for modulus 13 related to partition generating function
item.page.program
item.page.orgauthor
item.page.kuauthor
item.page.coauthor
Yazarlar
Danışman
Tarih
item.page.language
item.page.type
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
Let \(p(n)\) be the classical partition function, i.e., the number of non-increasing sequences of positive integers whose sum is \(n\). Let \[ F^{(k,m)} =q^k \sum_{n=0}^\infty p(mn+k) y^{n},\quad (z; q)_\infty =\prod_{n=1}^\infty (1-zq^{n-1} ), \] \[ P(0)=(y^m; y^m)_\infty , \quad P(a)= (y^a; y^m)_\infty (y^{m-a}; y^m)_\infty \text{ if } m\nmid a, \] where \(y=q^m\). In this paper, using Kolberg's method, the authors give congruences for \(F^{(k,13)}\) modulo \(13\) for all \(0\leq k\leq 12\). For example, \[ F^{(0,13)}\equiv y\frac{P(2)}{P(4)}\left\{ \frac{P(0)P(6)}{yP(1)P(3)}-4(y; y)^{11}_{\infty} \right\} \pmod{13} . \]
Açıklama
item.page.source
Yayınevi
Springer Science and Business Media LLC
