Publication:
Unrestricted Fibonacci and Lucas Quaternions

dc.contributor.authorAhmet Daşdemir, Göksal Bilgici
dc.date.accessioned2023-05-09T20:16:47Z
dc.date.available2023-05-09T20:16:47Z
dc.date.issued2021-03-01
dc.description.abstractMany quaternion numbers associated with Fibonacci and Lucas numbers or even theirgeneralizations have been defined and widely discussed so far. In all the studies, thecoefficients of these quaternions have been selected from consecutive terms of these numbers.In this study, we define other generalizations for the usual Fibonacci and Lucas quaternions.We also present some properties, including the Binet’s formulas and d’Ocagne’s identities,for these types of quaternions.
dc.identifier.citationDaşdemir, A., Bi̇lgi̇ci̇, G. (2021). Unrestricted Fibonacci and Lucas Quaternions. Fundamental journal of mathematics and applications (Online), 4(1), 1-9
dc.identifier.doi10.33401/fujma.752758
dc.identifier.endpage9
dc.identifier.startpage1
dc.identifier.trdizin434048
dc.identifier.urihttps://search.trdizin.gov.tr/publication/detail/434048/unrestricted-fibonacci-and-lucas-quaternions
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleUnrestricted Fibonacci and Lucas Quaternions
dc.typeRESEARCH
dspace.entity.typePublication
relation.isTrdizinOfPublication334b7be8-aafd-4ba5-9540-8c2956c32e03
relation.isTrdizinOfPublication.latestForDiscovery334b7be8-aafd-4ba5-9540-8c2956c32e03

Files

Collections