Yayın:
The cubic eigenparameter dependent discrete Dirac equations with principal functions

dc.contributor.authorKöprübaşı, Turhan
dc.date.accessioned2026-01-04T12:56:49Z
dc.date.issued2019-07-01
dc.description.abstractSummary: Let us consider the boundary value problem (BVP) for the discrete Dirac equations) \[\begin{cases} a_{n+1}y_{n+ 1}^{(2)}+ b_ny^{(2)}_n+ p_n y^{(1)}_n & =\lambda y^{(1)}_n,\\ a_{n-1}y^{(1)}_{n-1}+ b_n y_n^{(1)}+q_n y_n^{(2)}& =\lambda y_n^{(2)},\qquad n\in\mathbb{N},\end{cases}\tag{\(0.1\)}\] \[(\gamma_0+ \gamma_1\lambda+ \gamma_2 \lambda^2+ \gamma_3\lambda^3) y^{(2)}_1+ (\beta_0+ \beta_1 \lambda+ \beta_2\lambda^2) y^{(1)}_0=0,\tag{\(0.2\)}\] where \((a_n)\), \((b_n)\), \((p_n)\), \((q_n)\), \(n\in\mathbb{N}\) are complex sequences, \(\gamma_i\), \(\beta_i \in\mathbb{C}\), \(i = 0, 1, 2\) and \(\lambda\) is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a ifinite number of eigenvalues and spectral singularities with a finite ultiplicities, if \[\sum_{n=1}^\infty \exp(\varepsilon n^\delta)(|1-a_n|+ |1+b_n|+ |p_n|+ |q_n|)<\infty,\] holds, for some \(\varepsilon\) and \(\frac{1}{2}\le\delta\le 1\).
dc.description.urihttps://doi.org/10.31801/cfsuasmas.454232
dc.description.urihttps://dergipark.org.tr/en/download/article-file/693267
dc.description.urihttps://zbmath.org/7549239
dc.description.urihttps://dx.doi.org/10.31801/cfsuasmas.454232
dc.description.urihttps://dergipark.org.tr/tr/pub/cfsuasmas/issue/42777/454232
dc.description.urihttps://doi.org/https://doi.org/10.31801/cfsuasmas.454232
dc.description.urihttps://doi.org/https://doi.org/20.500.12575/75919
dc.identifier.doi10.31801/cfsuasmas.454232
dc.identifier.endpage1760
dc.identifier.issn1303-5991
dc.identifier.openairedoi_dedup___::49aa47c4ebb61555b9d7c0dc2887e4ad
dc.identifier.orcid0000-0003-1551-1527
dc.identifier.startpage1742
dc.identifier.urihttps://hdl.handle.net/20.500.12597/37398
dc.identifier.volume68
dc.identifier.wos000488869500044
dc.publisherCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
dc.relation.ispartofCommunications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
dc.rightsOPEN
dc.subjectDiscrete Dirac equations
dc.subjectEigenparameter
dc.subjectSpectral analysis
dc.subjectSpectrum
dc.subjectPrincipal functions
dc.subjectParticular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
dc.subjectSpectral analysis
dc.subjectdiscrete Dirac equations
dc.subjectspectral analysis
dc.subjectspectrum
dc.subjecteigenparameter
dc.subjectprincipal functions
dc.subjectDifference operators
dc.subjectSpectrum, resolvent
dc.subjectDiscrete Dirac equations
dc.subjectEigenparameter
dc.titleThe cubic eigenparameter dependent discrete Dirac equations with principal functions
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Köprübaşı, Turhan","name":"Turhan","surname":"Köprübaşı","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-1551-1527"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Discrete Dirac equations;Eigenparameter;Spectral analysis;Spectrum;Principal functions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Spectral analysis"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"discrete Dirac equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"spectral analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"spectrum"},"provenance":null},{"subject":{"scheme":"keyword","value":"eigenparameter"},"provenance":null},{"subject":{"scheme":"keyword","value":"principal functions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Difference operators"},"provenance":null},{"subject":{"scheme":"keyword","value":"Spectrum, resolvent"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete Dirac equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Eigenparameter"},"provenance":null}],"mainTitle":"The cubic eigenparameter dependent discrete Dirac equations with principal functions","subTitle":null,"descriptions":["Summary: Let us consider the boundary value problem (BVP) for the discrete Dirac equations) \\[\\begin{cases} a_{n+1}y_{n+ 1}^{(2)}+ b_ny^{(2)}_n+ p_n y^{(1)}_n & =\\lambda y^{(1)}_n,\\\\ a_{n-1}y^{(1)}_{n-1}+ b_n y_n^{(1)}+q_n y_n^{(2)}& =\\lambda y_n^{(2)},\\qquad n\\in\\mathbb{N},\\end{cases}\\tag{\\(0.1\\)}\\] \\[(\\gamma_0+ \\gamma_1\\lambda+ \\gamma_2 \\lambda^2+ \\gamma_3\\lambda^3) y^{(2)}_1+ (\\beta_0+ \\beta_1 \\lambda+ \\beta_2\\lambda^2) y^{(1)}_0=0,\\tag{\\(0.2\\)}\\] where \\((a_n)\\), \\((b_n)\\), \\((p_n)\\), \\((q_n)\\), \\(n\\in\\mathbb{N}\\) are complex sequences, \\(\\gamma_i\\), \\(\\beta_i \\in\\mathbb{C}\\), \\(i = 0, 1, 2\\) and \\(\\lambda\\) is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a ifinite number of eigenvalues and spectral singularities with a finite ultiplicities, if \\[\\sum_{n=1}^\\infty \\exp(\\varepsilon n^\\delta)(|1-a_n|+ |1+b_n|+ |p_n|+ |q_n|)<\\infty,\\] holds, for some \\(\\varepsilon\\) and \\(\\frac{1}{2}\\le\\delta\\le 1\\)."],"publicationDate":"2019-07-01","publisher":"Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics","embargoEndDate":null,"sources":["Crossref","Volume: 68, Issue: 2 1742-1760","1303-5991","2618-6470","Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics"],"formats":["application/xml","application/pdf"],"contributors":["Other"],"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics","issnPrinted":"1303-5991","issnOnline":null,"issnLinking":null,"ep":"1760","iss":null,"sp":"1742","vol":"68","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::49aa47c4ebb61555b9d7c0dc2887e4ad","originalIds":["10.31801/cfsuasmas.454232","50|doiboost____|49aa47c4ebb61555b9d7c0dc2887e4ad","oai:zbmath.org:7549239","50|c2b0b933574d::cd522822540f8422b96fff2498303af7","2937055213","50|tubitakulakb::b5f996145177bdeaa5feade03ae181bf","oai:dergipark.org.tr:article/454232","ftankarauniv:oai:dspace.ankara.edu.tr:20.500.12575/75919","50|base_oa_____::944f587702edac591277acb13266b6e5"],"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"},{"scheme":"handle","value":"20.500.12575/75919"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":4,"influence":2.7912603e-9,"popularity":4.3699826e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://doi.org/10.31801/cfsuasmas.454232"],"publicationDate":"2019-07-01","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"license":"CC BY","type":"Article","urls":["https://dergipark.org.tr/en/download/article-file/693267"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://zbmath.org/7549239","https://doi.org/10.31801/cfsuasmas.454232"],"publicationDate":"2019-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2937055213"},{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Other literature type","urls":["https://dx.doi.org/10.31801/cfsuasmas.454232"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/cfsuasmas/issue/42777/454232"],"publicationDate":"2018-08-17","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"20.500.12575/75919"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://doi.org/https://doi.org/10.31801/cfsuasmas.454232","https://doi.org/https://doi.org/20.500.12575/75919"],"publicationDate":"2021-11-05","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS

Dosyalar

Koleksiyonlar