Yayın: The cubic eigenparameter dependent discrete Dirac equations with principal functions
| dc.contributor.author | Köprübaşı, Turhan | |
| dc.date.accessioned | 2026-01-04T12:56:49Z | |
| dc.date.issued | 2019-07-01 | |
| dc.description.abstract | Summary: Let us consider the boundary value problem (BVP) for the discrete Dirac equations) \[\begin{cases} a_{n+1}y_{n+ 1}^{(2)}+ b_ny^{(2)}_n+ p_n y^{(1)}_n & =\lambda y^{(1)}_n,\\ a_{n-1}y^{(1)}_{n-1}+ b_n y_n^{(1)}+q_n y_n^{(2)}& =\lambda y_n^{(2)},\qquad n\in\mathbb{N},\end{cases}\tag{\(0.1\)}\] \[(\gamma_0+ \gamma_1\lambda+ \gamma_2 \lambda^2+ \gamma_3\lambda^3) y^{(2)}_1+ (\beta_0+ \beta_1 \lambda+ \beta_2\lambda^2) y^{(1)}_0=0,\tag{\(0.2\)}\] where \((a_n)\), \((b_n)\), \((p_n)\), \((q_n)\), \(n\in\mathbb{N}\) are complex sequences, \(\gamma_i\), \(\beta_i \in\mathbb{C}\), \(i = 0, 1, 2\) and \(\lambda\) is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a ifinite number of eigenvalues and spectral singularities with a finite ultiplicities, if \[\sum_{n=1}^\infty \exp(\varepsilon n^\delta)(|1-a_n|+ |1+b_n|+ |p_n|+ |q_n|)<\infty,\] holds, for some \(\varepsilon\) and \(\frac{1}{2}\le\delta\le 1\). | |
| dc.description.uri | https://doi.org/10.31801/cfsuasmas.454232 | |
| dc.description.uri | https://dergipark.org.tr/en/download/article-file/693267 | |
| dc.description.uri | https://zbmath.org/7549239 | |
| dc.description.uri | https://dx.doi.org/10.31801/cfsuasmas.454232 | |
| dc.description.uri | https://dergipark.org.tr/tr/pub/cfsuasmas/issue/42777/454232 | |
| dc.description.uri | https://doi.org/https://doi.org/10.31801/cfsuasmas.454232 | |
| dc.description.uri | https://doi.org/https://doi.org/20.500.12575/75919 | |
| dc.identifier.doi | 10.31801/cfsuasmas.454232 | |
| dc.identifier.endpage | 1760 | |
| dc.identifier.issn | 1303-5991 | |
| dc.identifier.openaire | doi_dedup___::49aa47c4ebb61555b9d7c0dc2887e4ad | |
| dc.identifier.orcid | 0000-0003-1551-1527 | |
| dc.identifier.startpage | 1742 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/37398 | |
| dc.identifier.volume | 68 | |
| dc.identifier.wos | 000488869500044 | |
| dc.publisher | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | |
| dc.relation.ispartof | Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics | |
| dc.rights | OPEN | |
| dc.subject | Discrete Dirac equations | |
| dc.subject | Eigenparameter | |
| dc.subject | Spectral analysis | |
| dc.subject | Spectrum | |
| dc.subject | Principal functions | |
| dc.subject | Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) | |
| dc.subject | Spectral analysis | |
| dc.subject | discrete Dirac equations | |
| dc.subject | spectral analysis | |
| dc.subject | spectrum | |
| dc.subject | eigenparameter | |
| dc.subject | principal functions | |
| dc.subject | Difference operators | |
| dc.subject | Spectrum, resolvent | |
| dc.subject | Discrete Dirac equations | |
| dc.subject | Eigenparameter | |
| dc.title | The cubic eigenparameter dependent discrete Dirac equations with principal functions | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Köprübaşı, Turhan","name":"Turhan","surname":"Köprübaşı","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-1551-1527"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Discrete Dirac equations;Eigenparameter;Spectral analysis;Spectrum;Principal functions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Spectral analysis"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"discrete Dirac equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"spectral analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"spectrum"},"provenance":null},{"subject":{"scheme":"keyword","value":"eigenparameter"},"provenance":null},{"subject":{"scheme":"keyword","value":"principal functions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Difference operators"},"provenance":null},{"subject":{"scheme":"keyword","value":"Spectrum, resolvent"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete Dirac equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Eigenparameter"},"provenance":null}],"mainTitle":"The cubic eigenparameter dependent discrete Dirac equations with principal functions","subTitle":null,"descriptions":["Summary: Let us consider the boundary value problem (BVP) for the discrete Dirac equations) \\[\\begin{cases} a_{n+1}y_{n+ 1}^{(2)}+ b_ny^{(2)}_n+ p_n y^{(1)}_n & =\\lambda y^{(1)}_n,\\\\ a_{n-1}y^{(1)}_{n-1}+ b_n y_n^{(1)}+q_n y_n^{(2)}& =\\lambda y_n^{(2)},\\qquad n\\in\\mathbb{N},\\end{cases}\\tag{\\(0.1\\)}\\] \\[(\\gamma_0+ \\gamma_1\\lambda+ \\gamma_2 \\lambda^2+ \\gamma_3\\lambda^3) y^{(2)}_1+ (\\beta_0+ \\beta_1 \\lambda+ \\beta_2\\lambda^2) y^{(1)}_0=0,\\tag{\\(0.2\\)}\\] where \\((a_n)\\), \\((b_n)\\), \\((p_n)\\), \\((q_n)\\), \\(n\\in\\mathbb{N}\\) are complex sequences, \\(\\gamma_i\\), \\(\\beta_i \\in\\mathbb{C}\\), \\(i = 0, 1, 2\\) and \\(\\lambda\\) is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a ifinite number of eigenvalues and spectral singularities with a finite ultiplicities, if \\[\\sum_{n=1}^\\infty \\exp(\\varepsilon n^\\delta)(|1-a_n|+ |1+b_n|+ |p_n|+ |q_n|)<\\infty,\\] holds, for some \\(\\varepsilon\\) and \\(\\frac{1}{2}\\le\\delta\\le 1\\)."],"publicationDate":"2019-07-01","publisher":"Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics","embargoEndDate":null,"sources":["Crossref","Volume: 68, Issue: 2 1742-1760","1303-5991","2618-6470","Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics"],"formats":["application/xml","application/pdf"],"contributors":["Other"],"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics","issnPrinted":"1303-5991","issnOnline":null,"issnLinking":null,"ep":"1760","iss":null,"sp":"1742","vol":"68","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::49aa47c4ebb61555b9d7c0dc2887e4ad","originalIds":["10.31801/cfsuasmas.454232","50|doiboost____|49aa47c4ebb61555b9d7c0dc2887e4ad","oai:zbmath.org:7549239","50|c2b0b933574d::cd522822540f8422b96fff2498303af7","2937055213","50|tubitakulakb::b5f996145177bdeaa5feade03ae181bf","oai:dergipark.org.tr:article/454232","ftankarauniv:oai:dspace.ankara.edu.tr:20.500.12575/75919","50|base_oa_____::944f587702edac591277acb13266b6e5"],"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"},{"scheme":"handle","value":"20.500.12575/75919"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":4,"influence":2.7912603e-9,"popularity":4.3699826e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://doi.org/10.31801/cfsuasmas.454232"],"publicationDate":"2019-07-01","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"license":"CC BY","type":"Article","urls":["https://dergipark.org.tr/en/download/article-file/693267"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://zbmath.org/7549239","https://doi.org/10.31801/cfsuasmas.454232"],"publicationDate":"2019-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2937055213"},{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Other literature type","urls":["https://dx.doi.org/10.31801/cfsuasmas.454232"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/cfsuasmas/issue/42777/454232"],"publicationDate":"2018-08-17","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"20.500.12575/75919"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.454232"}],"type":"Article","urls":["https://doi.org/https://doi.org/10.31801/cfsuasmas.454232","https://doi.org/https://doi.org/20.500.12575/75919"],"publicationDate":"2021-11-05","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS |
