Yayın: The cubic eigenparameter dependent discrete Dirac equations with principal functions
item.page.program
item.page.orgauthor
item.page.kuauthor
item.page.coauthor
Yazarlar
Danışman
Tarih
item.page.language
item.page.type
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
Summary: Let us consider the boundary value problem (BVP) for the discrete Dirac equations) \[\begin{cases} a_{n+1}y_{n+ 1}^{(2)}+ b_ny^{(2)}_n+ p_n y^{(1)}_n & =\lambda y^{(1)}_n,\\ a_{n-1}y^{(1)}_{n-1}+ b_n y_n^{(1)}+q_n y_n^{(2)}& =\lambda y_n^{(2)},\qquad n\in\mathbb{N},\end{cases}\tag{\(0.1\)}\] \[(\gamma_0+ \gamma_1\lambda+ \gamma_2 \lambda^2+ \gamma_3\lambda^3) y^{(2)}_1+ (\beta_0+ \beta_1 \lambda+ \beta_2\lambda^2) y^{(1)}_0=0,\tag{\(0.2\)}\] where \((a_n)\), \((b_n)\), \((p_n)\), \((q_n)\), \(n\in\mathbb{N}\) are complex sequences, \(\gamma_i\), \(\beta_i \in\mathbb{C}\), \(i = 0, 1, 2\) and \(\lambda\) is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a ifinite number of eigenvalues and spectral singularities with a finite ultiplicities, if \[\sum_{n=1}^\infty \exp(\varepsilon n^\delta)(|1-a_n|+ |1+b_n|+ |p_n|+ |q_n|)<\infty,\] holds, for some \(\varepsilon\) and \(\frac{1}{2}\le\delta\le 1\).
Açıklama
item.page.source
Yayınevi
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
item.page.keywords
Konusu
Discrete Dirac equations, Eigenparameter, Spectral analysis, Spectrum, Principal functions, Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.), Spectral analysis, discrete Dirac equations, spectral analysis, spectrum, eigenparameter, principal functions, Difference operators, Spectrum, resolvent, Discrete Dirac equations, Eigenparameter
