Publication:
Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation

dc.contributor.authorKaplan M., Ozer M.
dc.contributor.authorKaplan, M, Ozer, MN
dc.date.accessioned2023-05-09T15:47:36Z
dc.date.available2023-05-09T15:47:36Z
dc.date.issued2018-01-01
dc.date.issued2018.01.01
dc.description.abstractThe mathematical modelling of physical systems is generally expressed by nonlinear evolution equations. Therefore, it is critical to obtain solutions to these equations. We have employed the Hirota’s method to derive multiple soliton solutions to (2+1)-dimensional nonlinear evolution equation. Then we have studied the transformed rational function method to construct different types of analytical solutions to the nonlinear evolution equations. This algorithm provides a more convenient and systematical handling of the solution process of nonlinear evolution equations, unifying the homogeneous balance method, the mapping method, the tanh-function method, the F-expansion method and the exp-function method.
dc.identifier.doi10.1007/s11082-017-1270-6
dc.identifier.eissn1572-817X
dc.identifier.issn0306-8919
dc.identifier.scopus2-s2.0-85038960785
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12608
dc.identifier.volume50
dc.identifier.wosWOS:000422747300008
dc.relation.ispartofOptical and Quantum Electronics
dc.relation.ispartofOPTICAL AND QUANTUM ELECTRONICS
dc.rightsfalse
dc.subjectExact solutions | Multiple-soliton solutions | Simplified Hirota’s method | Transformed rational function method
dc.titleMultiple-soliton solutions and analytical solutions to a nonlinear evolution equation
dc.titleMultiple-soliton solutions and analytical solutions to a nonlinear evolution equation
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume50
relation.isScopusOfPublication10bdce63-193b-49e2-a583-4b96f43491db
relation.isScopusOfPublication.latestForDiscovery10bdce63-193b-49e2-a583-4b96f43491db
relation.isWosOfPublication990c58a5-aee3-4f13-8ef6-0e32aa2a18f2
relation.isWosOfPublication.latestForDiscovery990c58a5-aee3-4f13-8ef6-0e32aa2a18f2

Files

Collections