Publication:
Stability criterion for volterra type delay difference equations including a generalized difference operator

dc.contributor.authorGevgesoglu M., Bolat Y.
dc.contributor.authorGevgesoglu, M, Bolat, Y
dc.date.accessioned2023-05-09T20:44:39Z
dc.date.available2023-05-09T20:44:39Z
dc.date.issued2020-01-01
dc.date.issued2020.01.01
dc.description.abstractThe stability of a class of Volterra-type difference equations that include a generalized difference operator [increment]a is investigated using Krasnoselskii's fixed point theo-rem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.
dc.identifier.doi10.5666/KMJ.2020.60.1.163
dc.identifier.eissn0454-8124
dc.identifier.endpage175
dc.identifier.issn1225-6951
dc.identifier.scopus2-s2.0-85085926945
dc.identifier.startpage163
dc.identifier.urihttps://hdl.handle.net/20.500.12597/15389
dc.identifier.volume60
dc.identifier.wosWOS:000533595500011
dc.relation.ispartofKyungpook Mathematical Journal
dc.relation.ispartofKYUNGPOOK MATHEMATICAL JOURNAL
dc.rightsfalse
dc.subjectStability | Volterra difference equations
dc.titleStability criterion for volterra type delay difference equations including a generalized difference operator
dc.titleStability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume60
relation.isScopusOfPublicationda63a497-e4bd-4b62-b691-03ee56d3bf5f
relation.isScopusOfPublication.latestForDiscoveryda63a497-e4bd-4b62-b691-03ee56d3bf5f
relation.isWosOfPublicationa2331c86-a683-454d-994b-d663b54df9c4
relation.isWosOfPublication.latestForDiscoverya2331c86-a683-454d-994b-d663b54df9c4

Files

Collections