Publication:
Spectrum of the quadratic eigenparameter dependent discrete Dirac equations

dc.contributor.authorKoprubasi T.
dc.contributor.authorKoprubasi, T
dc.date.accessioned2023-05-09T18:40:45Z
dc.date.available2023-05-09T18:40:45Z
dc.date.issued2014-01-01
dc.date.issued2014.01.01
dc.description.abstractLet us consider the Boundary Value Problem (BVP) for the discrete Dirac equations {equation presented}, where (an), (bn), (p n) and (qn), n ∈ N are complex sequences, γi,βi ∈ C, i = 0, 1, 2, and λ is an eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that this BVP has a finite number of eigenvalues and spectral singularities with a finite number of multiplicities, if {equation presented}, holds, for some ε > 0 and 1/2 ≤ δ ≤ 1. ©2014 Koprubasi; licensee Springer.
dc.identifier.doi10.1186/1687-1847-2014-148
dc.identifier.issn1687-1847
dc.identifier.scopus2-s2.0-84901587790
dc.identifier.urihttps://hdl.handle.net/20.500.12597/13547
dc.identifier.wosWOS:000342085300002
dc.relation.ispartofAdvances in Difference Equations
dc.relation.ispartofADVANCES IN DIFFERENCE EQUATIONS
dc.rightstrue
dc.subjectDiscrete Dirac equations | Discrete spectrum | Eigenparameter | Spectral analysis | Spectral singularities
dc.titleSpectrum of the quadratic eigenparameter dependent discrete Dirac equations
dc.titleSpectrum of the quadratic eigenparameter dependent discrete Dirac equations
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume2014
relation.isScopusOfPublicationcdc93edd-4a1e-47bd-b4c2-5450d80eede2
relation.isScopusOfPublication.latestForDiscoverycdc93edd-4a1e-47bd-b4c2-5450d80eede2
relation.isWosOfPublication8337ca79-bbbc-4d03-82d8-b70b4603b465
relation.isWosOfPublication.latestForDiscovery8337ca79-bbbc-4d03-82d8-b70b4603b465

Files

Collections