Publication:
VAJDA’S IDENTITIES FOR DUAL FIBONACCI AND DUAL LUCAS SEDENIONS

dc.contributor.authorZafer ÜNAL
dc.date.accessioned2023-06-18T00:05:20Z
dc.date.available2023-06-18T00:05:20Z
dc.date.issued2023-04-01
dc.description.abstractFibonacci and Lucas numbers have been the most popular integer sequences since they were defined. These integer sequences have many uses, from nature to computer science, from art to financial analysis. Many researchers have worked on this subject. Sedenions form a 16-dimensional algebra on the field of real numbers. Various systems can be constructed by using the terms of special integer sequences instead of terms in sedenions. In this study, we define dual Fibonacci (DFS) and dual Lucas sedenions (DLS) with the help of Fibonacci and Lucas termed sedenions. Then we calculate some special identities for DFS and DLS such as Vajda's, Catalan's, d'Ocagne's, Cassini's.
dc.identifier.citationÜnal, Z. (2023). VAJDA’S IDENTITIES FOR DUAL FIBONACCI AND DUAL LUCAS SEDENIONS. Black Sea Journal of Engineering and Science, 6(2), 98-101
dc.identifier.doi10.34248/bsengineering.1253548
dc.identifier.endpage101
dc.identifier.startpage98
dc.identifier.trdizin1164278
dc.identifier.urihttps://search.trdizin.gov.tr/publication/detail/1164278/vajdas-identities-for-dual-fibonacci-and-dual-lucas-sedenions
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleVAJDA’S IDENTITIES FOR DUAL FIBONACCI AND DUAL LUCAS SEDENIONS
dc.typeRESEARCH
dspace.entity.typePublication
relation.isTrdizinOfPublication53b68575-3a0b-4f91-9a60-9673ccd5f758
relation.isTrdizinOfPublication.latestForDiscovery53b68575-3a0b-4f91-9a60-9673ccd5f758

Files

Collections