Publication:
Growing and pruning based deep neural networks modeling for effective Parkinson⇔s disease diagnosis

No Thumbnail Available

Date

2020-01-01, 2020.01.01

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Metrikler

Search on Google Scholar

Total Views

0

Total Downloads

0

Abstract

Parkinson's disease is a serious disease that causes death. Recently, a new dataset has been introduced on this disease. The aim of this study is to improve the predictive performance of the model designed for Parkinson's disease diagnosis. By and large, original DNN models were designed by using specific or random number of neurons and layers. This study analyzed the effects of parameters, i.e., neuron number and activation function on the model performance based on growing and pruning approach. In other words, this study addressed the optimum hidden layer and neuron numbers and ideal activation and optimization functions in order to find out the best Deep Neural Networks model. In this context of this study, several models were designed and evaluated. The overall results revealed that the Deep Neural Networks were significantly successful with 99.34% accuracy value on test data. Also, it presents the highest prediction performance reported so far. Therefore, this study presents a model promising with respect to more accurate Parkinson's disease diagnosis.

Description

Keywords

Deep neural networks | Growing and pruning | Machine learning | Parkinson's disease

Citation

Collections