Publication: DFT, FT-IR and FT-Raman investigations of 1-methyl-2- imidazolecarboxaldehyde
No Thumbnail Available
Date
2013-10-01, 2013.01.01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Metrikler
Total Views
0
Total Downloads
0
Abstract
The FT-IR and FT-Raman spectra of 1-methyl-2-imidazolecarboxaldehyde were recorded in the region 4000-400 cm-1 and 3500-50 cm-1, respectively. Optimized geometric parameters, conformational equilibria, normal mode frequencies, and corresponding vibrational assignments of title molecule were examined by means of density functional theory (DFT) method with B3LYP/6-311++G(d,p) basis set. All vibrational frequencies were assigned in detail with the help of total energy distribution (TEDs). The results showed that the DFT/B3LYP method predics vibrational frequencies and the structural parameters effectively. Furthermore, solvent effects are investigated in different solvents (chloroform, dimethylsulfoxide and water) using the self-consistent isodensity polarizable continuum model (SCI-PCM). All results indicate that the combination of SCI-PCM model and DFT/B3LYP/6-311++G(d,p) calculation could give excellent explanations of the solvent effects. Intermolecular hydrogen bonding between 1-methyl-2-imidazolecarboxaldehyde and water was investigated using quantum chemical methods. DFT calculations were used to optimize the adducts of heterocycle with the single water molecule. © 2013 Elsevier B.V. All rights reserved.
Description
Keywords
1-Methyl-2-imidazolecarboxaldehyde | DFT | Hydrogen bonding | SCI-PCM | Solvent effect | Vibrational spectra