Yayın:
Global Rigidity of 2D Linearly Constrained Frameworks

dc.contributor.authorGuler, Hakan
dc.contributor.authorJackson, Bill
dc.contributor.authorNixon, Anthony
dc.date.accessioned2026-01-04T14:39:10Z
dc.date.issued2020-10-26
dc.description.abstractAbstractA linearly constrained framework in $\mathbb{R}^d$ is a point configuration together with a system of constraints that fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system. We show that a generic linearly constrained framework in $\mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and “balanced”. For unbalanced generic frameworks, we determine the precise number of solutions to the constraint system whenever the rigidity matroid of the framework is connected. We obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $\mathbb{R}^d$.
dc.description.urihttps://doi.org/10.1093/imrn/rnaa157
dc.description.urihttps://eprints.lancs.ac.uk/id/eprint/144551/1/1906.10926.pdf
dc.description.urihttps://zbmath.org/7458128
dc.description.urihttps://dx.doi.org/10.1093/imrn/rnaa157
dc.description.urihttps://eprints.lancs.ac.uk/id/eprint/144551/
dc.identifier.doi10.1093/imrn/rnaa157
dc.identifier.eissn1687-0247
dc.identifier.endpage16858
dc.identifier.issn1073-7928
dc.identifier.openairedoi_dedup___::d04bba17ad8d2c3a6f9469962565ee91
dc.identifier.orcid0000-0003-3300-860x
dc.identifier.orcid0000-0003-0639-1295
dc.identifier.scopus2-s2.0-85106387269
dc.identifier.startpage16811
dc.identifier.urihttps://hdl.handle.net/20.500.12597/38322
dc.identifier.volume2021
dc.identifier.wos000731077700001
dc.language.isoeng
dc.publisherOxford University Press (OUP)
dc.relation.ispartofInternational Mathematics Research Notices
dc.rightsOPEN
dc.subjectRigidity and flexibility of structures (aspects of discrete geometry)
dc.subjectGraph representations (geometric and intersection representations, etc.)
dc.subjectlooped simple graph
dc.subjectglobal rigidity
dc.subjectPlanar graphs
dc.subjectgeometric and topological aspects of graph theory
dc.subject.sdg16. Peace & justice
dc.titleGlobal Rigidity of 2D Linearly Constrained Frameworks
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Guler, Hakan","name":"Hakan","surname":"Guler","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-3300-860x"},"provenance":null}},{"fullName":"Jackson, Bill","name":"Bill","surname":"Jackson","rank":2,"pid":null},{"fullName":"Nixon, Anthony","name":"Anthony","surname":"Nixon","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0003-0639-1295"},"provenance":null}}],"openAccessColor":"hybrid","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Rigidity and flexibility of structures (aspects of discrete geometry)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Graph representations (geometric and intersection representations, etc.)"},"provenance":null},{"subject":{"scheme":"FOS","value":"0102 computer and information sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"looped simple graph"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"SDG","value":"16. Peace & justice"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"global rigidity"},"provenance":null},{"subject":{"scheme":"keyword","value":"Planar graphs; geometric and topological aspects of graph theory"},"provenance":null}],"mainTitle":"Global Rigidity of 2D Linearly Constrained Frameworks","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title><jats:p>A linearly constrained framework in $\\mathbb{R}^d$ is a point configuration together with a system of constraints that fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system. We show that a generic linearly constrained framework in $\\mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and “balanced”. For unbalanced generic frameworks, we determine the precise number of solutions to the constraint system whenever the rigidity matroid of the framework is connected. We obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $\\mathbb{R}^d$.</jats:p>"],"publicationDate":"2020-10-26","publisher":"Oxford University Press (OUP)","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml","text"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"International Mathematics Research Notices","issnPrinted":"1073-7928","issnOnline":"1687-0247","issnLinking":null,"ep":"16858","iss":null,"sp":"16811","vol":"2021","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::d04bba17ad8d2c3a6f9469962565ee91","originalIds":["10.1093/imrn/rnaa157","50|doiboost____|d04bba17ad8d2c3a6f9469962565ee91","50|c2b0b933574d::e0f70a7941ebb265c3ba4b9c54222450","oai:zbmath.org:7458128","3040026570","oai:eprints.lancs.ac.uk:144551","50|od_______201::bd854cd98f490035b11e28308d12a3e6","50|base_oa_____::5ad1e725bc05772f1b39b4aa08edfcc1","ftulancaster:oai:eprints.lancs.ac.uk:144551"],"pids":[{"scheme":"doi","value":"10.1093/imrn/rnaa157"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":5,"influence":2.8909715e-9,"popularity":5.3269686e-9,"impulse":2,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1093/imrn/rnaa157"}],"license":"OUP Standard Publication Reuse","type":"Article","urls":["https://doi.org/10.1093/imrn/rnaa157"],"publicationDate":"2020-10-26","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1093/imrn/rnaa157"}],"type":"Article","urls":["https://eprints.lancs.ac.uk/id/eprint/144551/1/1906.10926.pdf"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1093/imrn/rnaa157"}],"type":"Article","urls":["https://doi.org/10.1093/imrn/rnaa157","https://zbmath.org/7458128"],"publicationDate":"2021-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"3040026570"},{"scheme":"doi","value":"10.1093/imrn/rnaa157"}],"type":"Article","urls":["https://dx.doi.org/10.1093/imrn/rnaa157"],"refereed":"nonPeerReviewed"},{"type":"Article","urls":["https://eprints.lancs.ac.uk/id/eprint/144551/"],"publicationDate":"2021-11-30","refereed":"peerReviewed"},{"license":"CC BY NC","type":"Article","publicationDate":"2021-11-30","refereed":"nonPeerReviewed"}],"isGreen":true,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar