Yayın:
Global Rigidity of 2D Linearly Constrained Frameworks

Placeholder

Akademik Birimler

item.page.program

item.page.orgauthor

item.page.kuauthor

item.page.coauthor

Danışman

item.page.language

item.page.type

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

AbstractA linearly constrained framework in $\mathbb{R}^d$ is a point configuration together with a system of constraints that fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system. We show that a generic linearly constrained framework in $\mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and “balanced”. For unbalanced generic frameworks, we determine the precise number of solutions to the constraint system whenever the rigidity matroid of the framework is connected. We obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $\mathbb{R}^d$.

Açıklama

item.page.source

Yayınevi

Oxford University Press (OUP)

item.page.keywords

Alıntı

Koleksiyonlar

Endorsement

Review

item.page.supplemented

item.page.referenced

0

Views

0

Downloads

View PlumX Details


İlişkili Sürdürülebilir Kalkınma Hedefleri