Publication:
Effect of Different Production Methods on the Mechanical and Microstructural Properties of Hypereutectic Al-Si Alloys

Placeholder

Organizational Units

Program

KU Authors

KU-Authors

Co-Authors

Authors

Advisor

Language

Journal Title

Journal ISSN

Volume Title

Abstract

In this study, the effects of different production methods like melt spinning, high-energy ball milling, and combined melt spinning and high-energy ball milling on the mechanical and microstructural properties of hypereutectic Al-20Si-5Fe alloys were investigated. While microstructural and spectroscopic analyses were performed using scanning electron microscopy and X-ray diffractometry, mechanical properties were measured using a depth-sensing indentation instrument with a Berkovich tip. Microstructural and spectroscopic analyses demonstrate that high-energy ball milling process applied on the melt-spun Al-20-Si-5Fe alloy for 10 minutes brings about a reduction in the size of silicon particles and intermetallic compounds. However, further increase in milling time does not yield any significant reduction in size. High-energy ball milling for 10 minutes on the starting powders is not enough to form any intermetallic phase. According to the depth-sensing indentation experiments, high-energy milling of melt-spun Al-20Si-5Fe alloys shows an incremental behavior in terms of hardness values. For the Al-20Si-5Fe alloys investigated in this study, the production technique remarkably influences their elastic–plastic response to the indentation process in terms of both magnitude and shape of P-h curves.

Description

Source:

Publisher:

Keywords:

Keywords

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads

View PlumX Details


Sustainable Development Goals