Publication:
Detection and classification of shoulder implants from X-ray images: YOLO and pretrained convolution neural network based approach

dc.contributor.authorKaraci A.
dc.contributor.authorKaraci, A
dc.date.accessioned2023-05-09T11:31:38Z
dc.date.available2023-05-09T11:31:38Z
dc.date.issued2022-01-01
dc.date.issued2022.01.01
dc.description.abstractShoulder implants may need to be replaced several months or years after insertion. In this case, it is important to determine the manufacturer or model of the implant. In some cases, the implant manufacturer and model may not be known to patients or their physicians due to uncertainty in medical records. Today, the task of identifying an implant manufacturer or model in such situations relies on meticulous examination and visual comparison of X-ray images taken from the implant by medical professionals. But this identification task is often time-consuming, error-prone and difficult for both radiologists and orthopedic surgeons. In this study, it is aimed to automatically detect the implant manufacturer using deep learning methods. For this purpose, pretrained CNN architectures and cascade models consisting of feeding these architectures with the YOLO algorithm have been proposed.
dc.identifier.citationKaraci, A. (2022). X-ışını görüntülerinden omuz implantlarının tespiti ve sınıflandırılması: YOLO ve önceden eğitilmiş evrişimsel sinir ağı tabanlı bir yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 283-294
dc.identifier.doi10.17341/gazimmfd.888202
dc.identifier.eissn1304-4915
dc.identifier.endpage294
dc.identifier.endpage294
dc.identifier.issn1300-1884
dc.identifier.scopus2-s2.0-85119911636
dc.identifier.startpage283
dc.identifier.startpage283
dc.identifier.trdizin1064175
dc.identifier.urihttps://search.trdizin.gov.tr/publication/detail/1064175/x-isini-goruntulerinden-omuz-implantlarinin-tespiti-ve-siniflandirilmasi-yolo-ve-onceden-egitilmis-evrisimsel-sinir-agi-tabanli-bir-yaklasim
dc.identifier.volume37
dc.identifier.wosWOS:000718898200013
dc.relation.ispartofJournal of the Faculty of Engineering and Architecture of Gazi University
dc.relation.ispartofJOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY
dc.rightstrue
dc.subjectConvolutional neuralnetworks | Deep learning | Object detection | Shoulder implant | YOLO
dc.titleDetection and classification of shoulder implants from X-ray images: YOLO and pretrained convolution neural network based approach
dc.titleDetection and classification of shoulder implants from X-ray images: YOLO and pre- trained convolution neural network based approach
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume37
relation.isScopusOfPublication44524a0e-66e3-4217-b723-85ec41250a6c
relation.isScopusOfPublication.latestForDiscovery44524a0e-66e3-4217-b723-85ec41250a6c
relation.isTrdizinOfPublicationf64038e2-6ec5-400b-a59b-9b213114893e
relation.isTrdizinOfPublication.latestForDiscoveryf64038e2-6ec5-400b-a59b-9b213114893e
relation.isWosOfPublicationc31d15b0-d16d-44c7-b2ef-5f0f9e824592
relation.isWosOfPublication.latestForDiscoveryc31d15b0-d16d-44c7-b2ef-5f0f9e824592

Files

Collections