Publication:
Exact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution

dc.contributor.authorRaza N., Sial S., Kaplan M.
dc.contributor.authorRaza, N, Sial, S, Kaplan, M
dc.date.accessioned2023-05-09T16:04:04Z
dc.date.available2023-05-09T16:04:04Z
dc.date.issued2018-03-01
dc.date.issued2018.01.01
dc.description.abstractThe term soliton has been used for a pulse like nonlinear wave (solitary wave) which leaves an interaction with unaltered shape and speed. To date, no less than seven particular wave frameworks or systems have been found to show such solutions. This speaks to an extensive variety of utilizations in applied science. The Exp(−ϕ(ξ))-expansion technique is utilized to find generalized solitary solutions and intermittent or periodic solutions for nonlinear evolution equations emerging in mathematical physics with the use of the enhanced time conformable equation. The technique is direct and succinct, and its applications are promising for other nonlinear mathematical physics.
dc.identifier.doi10.1016/j.ijleo.2017.11.107
dc.identifier.endpage634
dc.identifier.issn0030-4026
dc.identifier.scopus2-s2.0-85036621445
dc.identifier.startpage628
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12891
dc.identifier.volume156
dc.identifier.wosWOS:000424311500079
dc.relation.ispartofOptik
dc.relation.ispartofOPTIK
dc.rightsfalse
dc.subjectConformable fractional derivative | Exp(−ϕ(ξ)) methods | Nonlinear waves | Solitons solution
dc.titleExact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution
dc.titleExact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume156
relation.isScopusOfPublication60356530-91bf-4de2-99a7-b5aaa68b66bc
relation.isScopusOfPublication.latestForDiscovery60356530-91bf-4de2-99a7-b5aaa68b66bc
relation.isWosOfPublication97401d47-bc32-4a0c-b773-ce24ae6c6acd
relation.isWosOfPublication.latestForDiscovery97401d47-bc32-4a0c-b773-ce24ae6c6acd

Files

Collections