Publication:
Two generalizations of Lucas sequence

dc.contributor.authorBilgici G.
dc.contributor.authorBilgici, G
dc.date.accessioned2023-05-09T15:55:25Z
dc.date.available2023-05-09T15:55:25Z
dc.date.issued2014-10-15
dc.date.issued2014.01.01
dc.description.abstractWe define a generalization of Lucas sequence by the recurrence relation lm=blm-1+lm-2 (if m is even) or l m=alm-1+lm-2 (if m is odd) with initial conditions l0=2 and l1=a. We obtain some properties of the sequence {lm}m=0 and give some relations between this sequence and the generalized Fibonacci sequence {qm}m=0 which is defined in Edson and Yayenie (2009). Also, we give corresponding generalized Lucas sequence with the generalized Fibonacci sequence given in Yayenie (2011). © 2014 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.amc.2014.07.111
dc.identifier.eissn1873-5649
dc.identifier.endpage538
dc.identifier.issn0096-3003
dc.identifier.scopus2-s2.0-84906544779
dc.identifier.startpage526
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12742
dc.identifier.volume245
dc.identifier.wosWOS:000343613900046
dc.relation.ispartofApplied Mathematics and Computation
dc.relation.ispartofAPPLIED MATHEMATICS AND COMPUTATION
dc.rightsfalse
dc.subjectBinet formula | Generalized Fibonacci sequence | Generalized Lucas sequence | Generating function
dc.titleTwo generalizations of Lucas sequence
dc.titleTwo generalizations of Lucas sequence
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume245
relation.isScopusOfPublication7c489786-7f59-4f1e-baec-d25d8d3cdd8a
relation.isScopusOfPublication.latestForDiscovery7c489786-7f59-4f1e-baec-d25d8d3cdd8a
relation.isWosOfPublication75083954-933b-42d6-8bb4-28ae9d1b3333
relation.isWosOfPublication.latestForDiscovery75083954-933b-42d6-8bb4-28ae9d1b3333

Files

Collections