Publication: Two generalizations of Lucas sequence
dc.contributor.author | Bilgici G. | |
dc.contributor.author | Bilgici, G | |
dc.date.accessioned | 2023-05-09T15:55:25Z | |
dc.date.available | 2023-05-09T15:55:25Z | |
dc.date.issued | 2014-10-15 | |
dc.date.issued | 2014.01.01 | |
dc.description.abstract | We define a generalization of Lucas sequence by the recurrence relation lm=blm-1+lm-2 (if m is even) or l m=alm-1+lm-2 (if m is odd) with initial conditions l0=2 and l1=a. We obtain some properties of the sequence {lm}m=0 and give some relations between this sequence and the generalized Fibonacci sequence {qm}m=0 which is defined in Edson and Yayenie (2009). Also, we give corresponding generalized Lucas sequence with the generalized Fibonacci sequence given in Yayenie (2011). © 2014 Elsevier Inc. All rights reserved. | |
dc.identifier.doi | 10.1016/j.amc.2014.07.111 | |
dc.identifier.eissn | 1873-5649 | |
dc.identifier.endpage | 538 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.scopus | 2-s2.0-84906544779 | |
dc.identifier.startpage | 526 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12597/12742 | |
dc.identifier.volume | 245 | |
dc.identifier.wos | WOS:000343613900046 | |
dc.relation.ispartof | Applied Mathematics and Computation | |
dc.relation.ispartof | APPLIED MATHEMATICS AND COMPUTATION | |
dc.rights | false | |
dc.subject | Binet formula | Generalized Fibonacci sequence | Generalized Lucas sequence | Generating function | |
dc.title | Two generalizations of Lucas sequence | |
dc.title | Two generalizations of Lucas sequence | |
dc.type | Article | |
dspace.entity.type | Publication | |
oaire.citation.volume | 245 | |
relation.isScopusOfPublication | 7c489786-7f59-4f1e-baec-d25d8d3cdd8a | |
relation.isScopusOfPublication.latestForDiscovery | 7c489786-7f59-4f1e-baec-d25d8d3cdd8a | |
relation.isWosOfPublication | 75083954-933b-42d6-8bb4-28ae9d1b3333 | |
relation.isWosOfPublication.latestForDiscovery | 75083954-933b-42d6-8bb4-28ae9d1b3333 |