Browsing by Author "Demirci, Beste"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Pubmed Dietary effect of grape (Vitis vinifera) seed extract mitigates hepatic disorders caused by oxidized fish oil in rainbow trout (Oncorhynchus mykiss).(2023-04-25T00:00:00Z) Terzi, Funda; Demirci, Beste; Acar, Ümit; Yüksel, Süleyman; Salum, Çağatay; Erol, Huseyin Serkan; Kesbiç, Osman SabriThe major goal of this study was to determine the effect of grape seed extract (GSE) on liver damage in rainbow trout (Oncorhynchus mykiss) that was caused by the consumption of dietary oxidized fish oil (OFO). Rainbow trout were fed six different experimental diets coded OX-GSE 0 (OFO diet), OX-GSE 1 (OFO and 0.1% GSE), OX-GSE 3 (OFO and 0.3% GSE), GSE 0 (fresh fish oil and 0.0% GSE), GSE 1 (fresh fish oil and 0.1% GSE), and GSE 3 (fresh fish oil and 0.3% GSE) for 30 days. The lowest % hepatosomatic index (HSI) result was calculated in fish fed with OX-GSE 0 and the highest HSI was determined in fish fed with GSE 1 diets (p < 0.05). Histopathologically, hydropic degeneration in hepatocytes significantly increased OX-GSE 0 and GSE 3 compared to GSE 1 diets (p < 0.05). Deposition of lipid droplets in hepatocytes was significantly increased in OX-GSE 0 and OX-GSE 3 groups than others (p < 0.05). Liver biochemistry parameters such as superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) were significantly affected by OX and GSE treatments (p < 0.05). There were significant differences in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) among the liver enzymes analyzed in serum in OX and GSE (p < 0.05), meanwhile no difference was observed in lactate dehydrogenase (LDH) values between groups (p > 0.05). In conclusion, liver biochemistry and histopathology of rainbow trout consuming diets containing oxidized fish oil were negatively affected. However, it was determined that the supplementation of 0.1% GSE to the diet had a significant ameliorative role in these adverse effects.Pubmed Does dietary incorporation level of pea protein isolate influence the digestive system morphology in rainbow trout (Oncorhynchus mykiss)?(2021-11-01T00:00:00Z) Demirci, Beste; Terzi, Funda; Kesbic, Osman Sabri; Acar, Umit; Yilmaz, Sevdan; Kesbic, Fevziye IsilIn the present study, fish meal (FM) was replaced by pea (Pisum sativum) protein (PP) in diet for Rainbow trout (Oncorhynchus mykiss) at levels of 0% (PP0), 25% (PP25), 50% (PP50), 75% (PP75) and 100% (PP100), and the effect of dietary PP level on the digestive system tracts and liver was investigated by micromorphological and histopathological evaluations. Morphometric measurements (mm 100g fish ) of the liver width and stomach length in rainbow trout were found to be significantly larger (p <0.05) in fish with high-level pea protein as the main protein source (PP75, PP100) compared to the low-level PP replacement group (PP25). No significant differences were found in morphometric measurements for pyloric caecum and intestines among treatment groups, whereas the number of the caecum of fish fed the PP25 diets significantly increased over the control (PP0) (p<0.05). In the histological examination of the liver, mild hydropic and vacuolar degeneration was observed in all experimental groups except PP0 and PP25. The measurements of pyloric caecum fold height, enterocyte length and width of tunica muscularis of the high-level pea protein groups of PP75 and PP100 were significantly higher (p <0.05) compared to the control group. In conclusion, 25% substitution of PP can be suggested for FM in trout diets, because the findings of the present study provided evidence that the digestive system improved by increasing the number of pyloric caecum at this replacement level.Pubmed Effects of tocilizumab and dexamethasone on the downregulation of proinflammatory cytokines and upregulation of antioxidants in the lungs in oleic acid-induced ARDS.(2022-09-17T00:00:00Z) Terzi, Funda; Demirci, Beste; Çınar, İrfan; Alhilal, Mohammad; Erol, Huseyin SerkanAcute respiratory distress syndrome (ARDS) is a life-threatening disease caused by the induction of inflammatory cytokines and chemokines in the lungs. There is a dearth of drug applications that can be used to prevent cytokine storms in ARDS treatment. This study was designed to investigate the effects of tocilizumab and dexamethasone on oxidative stress, antioxidant parameters, and cytokine storms in acute lung injury caused by oleic acid in rats.Pubmed Gill arch and raker morphology of common carp (Cyprinus carpio, Linnaeus, 1758) sampled in aquaculture system.(2023-09-01) Demirci, Beste; Kesbiç, Osman SabriThe study aimed to investigate the morphologic aspects of common carp's gill arch and gill rakers (Cyprinus carpio, Linnaeus, 1758), an omnivore and highest-produced aquaculture species. The study used 10 common carp (395.35 ± 45.06 g) grown entirely under aquaculture conditions. The fish tissues were fixed with Glutaraldehyde (2.5%) for scanning electron microscopy and with formalin (10%) for stereomicroscopic examination. In the SEM examination, two types of taste papillae (Type II and Type III) were observed in the pharyngeal mucosa. Microridge-like structures in the epithelial layer were found to have two forms. The study findings indicate a significant decrease in gill arch lengths from cranial to caudal and a significant increase in rakers per unit area, as determined through digital calliper measurements and stereomicroscopic examinations (p < 0.05). However, there was no significant difference in measurements of gill arches and raker numbers between the bilateral symmetry of the gill arches (p > 0.05). In conclusion, it was observed that the epithelial structure on the common carp gill arch contained two types of microridge-like structures: the gill arch length decreased from cranial to caudal, and the rake density on these arches increased caudally.Pubmed Gossypin mitigates oxidative damage by downregulating the molecular signaling pathway in oleic acid-induced acute lung injury.(2023-09-11) Dincer, Busra; Cinar, Irfan; Erol, Huseyin Serkan; Demirci, Beste; Terzi, FundaOne of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.Pubmed Morphological structure of rat tongue using light and scanning electron microscopy.(2023-01-01T00:00:00Z) Demirci, Beste; Kandil, Banu; Yüksel, Süleyman; Gültiken, Murat ErdemThe rat is one of the most commonly used animals in biological research and experimental investigations in medicine. The ultrafine structural components of the epithelium differ depending on the anatomy of the animal and the papilla type. Animal adaptation to food types and environmental circumstances may also be linked to morphological diversity. In the current study, seven male Wistar rat tongues were investigated. For scanning electron microscope (SEM), two rat tongues were immersed in a 10% formalin solution and the other two rat tongues were immersed in a 2.5% glutaraldehyde solution. The tongues of three rats were fixed for regular histological evaluation using triple staining. The three primary components of the Wistar rat tongue are the apex, body and root. The apex had a rounded and bifurcated shape. Filiform papillae and gustatory papillae were easily identified on the dorsal side of the tongue. There were three forms of gustatory papillae; fungiform papillae, vallate papillae and foliate papillae. The purpose of this study was to expose the tongue morphology of the Wistar rat species, which is widely used in investigations. Also, we wanted to show that formalin fixation can be utilized for morphological research in SEM. Finally, the Wistar rat tongue was thoroughly investigated and compared to those of other species.