Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced by plasma spray method

Küçük Resim

Akademik Birimler

item.page.program

item.page.orgauthor

item.page.kuauthor

item.page.coauthor

Danışman

Tarih

item.page.language

item.page.type

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

In this study, Al2O3-TiO2 composite coatings were thermally sprayed on the SAE 1040 steel using atmospheric plasma spray (APS) process of mixed different rates micron–sized TiO2 and micron-sized Al2O3 powders. The effects of TiO2 addition on the microstructure, phase compositions and microhardness of the coatings were investigated by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and microhardness tester. The results show that the Al2O3-TiO2 composite coatings consists of both fully melted regions and partially melted regions, and the fully melted region has a lamellar-like structure. Phase transformations from mainly stable α-Al2O3 and anatase-TiO2 in the powders to predominant metastable γ-Al2O3, rutile-TiO2 and Al2TiO5 phase in the Al2O3-TiO2 composite coatings were observed. It was determined that the pore content decreased with the increased in the TiO2 powder rate. The microhardness of the coating layers was 3-4.5 times higher than substrate material. The average microhardness values of the coatings were found to reach 650-860 HV.

Açıklama

item.page.source

Yayınevi

ptoelectronics and Advanced Materials – Rapid Communications, Volume: 6, No: 9-10, 2012, p. 844-849.

item.page.keywords

Alıntı

Koleksiyonlar

Endorsement

Review

item.page.supplemented

item.page.referenced

2

Views

6

Downloads


İlişkili Sürdürülebilir Kalkınma Hedefleri