Yayın:
Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials

dc.contributor.authorYildizel, Sadik Alper
dc.contributor.authorTuskan, Yesim
dc.contributor.authorKaplan, Gökhan
dc.date.accessioned2026-01-02T23:53:56Z
dc.date.issued2017-01-01
dc.description.abstractThis research focuses on the use of adaptive artificial neural network system for evaluating the skid resistance value (British Pendulum Number; BPN) of the glass fiber-reinforced tiling materials. During the creation of the neural model, four main factors were considered: fiber, calcium carbonate content, sand blasting, and polishing properties of the specimens. The model was trained, tested, and compared with the on-site test results. As per the comparison of the outcomes of the study, the analysis and on-site test results showed that there is a great potential for the prediction of BPN of glass fiber-reinforced tiling materials by using developed neural system.
dc.description.urihttps://doi.org/10.1155/2017/7620187
dc.description.urihttp://downloads.hindawi.com/journals/ace/2017/7620187.pdf
dc.description.urihttps://doaj.org/article/2a93ef533b454f7e9083f5c6ac05a591
dc.description.urihttps://dx.doi.org/10.1155/2017/7620187
dc.description.urihttps://hdl.handle.net/11492/2818
dc.identifier.doi10.1155/2017/7620187
dc.identifier.eissn1687-8094
dc.identifier.endpage8
dc.identifier.issn1687-8086
dc.identifier.openairedoi_dedup___::ab6ae37d4bc0a9be1089f855b1565275
dc.identifier.orcid0000-0001-5702-807x
dc.identifier.orcid0000-0001-6067-7337
dc.identifier.scopus2-s2.0-85042098170
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/20.500.12597/36340
dc.identifier.volume2017
dc.identifier.wos000418961700001
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofAdvances in Civil Engineering
dc.rightsOPEN
dc.subjectTA1-2040
dc.subjectEngineering (General). Civil engineering (General)
dc.titlePrediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Sadik Alper Yildizel","name":"Sadik Alper","surname":"Yildizel","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5702-807x"},"provenance":null}},{"fullName":"Yesim Tuskan","name":"Yesim","surname":"Tuskan","rank":2,"pid":null},{"fullName":"Gökhan Kaplan","name":"Gökhan","surname":"Kaplan","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-6067-7337"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"0211 other engineering and technologies"},"provenance":null},{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"keyword","value":"TA1-2040"},"provenance":null},{"subject":{"scheme":"keyword","value":"Engineering (General). Civil engineering (General)"},"provenance":null}],"mainTitle":"Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials","subTitle":null,"descriptions":["<jats:p>This research focuses on the use of adaptive artificial neural network system for evaluating the skid resistance value (British Pendulum Number; BPN) of the glass fiber-reinforced tiling materials. During the creation of the neural model, four main factors were considered: fiber, calcium carbonate content, sand blasting, and polishing properties of the specimens. The model was trained, tested, and compared with the on-site test results. As per the comparison of the outcomes of the study, the analysis and on-site test results showed that there is a great potential for the prediction of BPN of glass fiber-reinforced tiling materials by using developed neural system.</jats:p>"],"publicationDate":"2017-01-01","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref","Advances in Civil Engineering, Vol 2017 (2017)"],"formats":["text/xhtml","application/pdf"],"contributors":["Yıldızel, Sadık Alper"],"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Advances in Civil Engineering","issnPrinted":"1687-8086","issnOnline":"1687-8094","issnLinking":null,"ep":"8","iss":null,"sp":"1","vol":"2017","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::ab6ae37d4bc0a9be1089f855b1565275","originalIds":["7620187","10.1155/2017/7620187","50|doiboost____|ab6ae37d4bc0a9be1089f855b1565275","oai:doaj.org/article:2a93ef533b454f7e9083f5c6ac05a591","50|doajarticles::83f88e5a325a26a8269c592cb5973005","50|hindawi_publ::69abc1aa55a9632d4009ff3c9280e19b","oai:hindawi.com:10.1155/2017/7620187","2780318405","50|od______3145::652c55a73fa53eb4a1b3658e6a2dc1a5","oai:earsiv.kmu.edu.tr:11492/2818"],"pids":[{"scheme":"doi","value":"10.1155/2017/7620187"},{"scheme":"handle","value":"11492/2818"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":4,"influence":2.7827343e-9,"popularity":3.3631253e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1155/2017/7620187"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.1155/2017/7620187"],"publicationDate":"2017-01-01","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1155/2017/7620187"}],"license":"CC BY","type":"Article","urls":["http://downloads.hindawi.com/journals/ace/2017/7620187.pdf"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2017/7620187"}],"type":"Article","urls":["https://doaj.org/article/2a93ef533b454f7e9083f5c6ac05a591"],"publicationDate":"2017-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2017/7620187"}],"type":"Article","urls":["https://doi.org/10.1155/2017/7620187"],"publicationDate":"2017-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2017/7620187"},{"scheme":"mag_id","value":"2780318405"}],"type":"Article","urls":["https://dx.doi.org/10.1155/2017/7620187"],"refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"11492/2818"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2017/7620187"}],"type":"Article","urls":["https://hdl.handle.net/11492/2818","https://dx.doi.org/10.1155/2017/7620187"],"publicationDate":"2017-01-01","refereed":"nonPeerReviewed"}],"isGreen":true,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar