Yayın:
Comparison of the Performance of the Regression Models in GPS-Total Electron Content Prediction

dc.contributor.authorAKYÜZ, Buse
dc.contributor.authorKARATAY, Seçil
dc.contributor.authorERKEN, Faruk
dc.date.accessioned2026-01-04T18:32:05Z
dc.date.issued2023-03-27
dc.description.abstractThe ionosphere is an important layer that provides radio communication in the upper atmosphere. The ionosphere is located between 50 km and 1000 km above the atmosphere. Electron density, which is the most important parameter of the ionosphere, changes depending on location, time, seasons, altitude, solar, geomagnetic and seismic activity. A significant measurable amount of electron density is Total Electron Content (TEC), which is used to probe the structure of the ionosphere and upper atmosphere. The Global Positioning System (GPS), which has a low cost and widespread receiver network is prominent used in TEC estimation. The IONOLAB-TEC data estimated from GPS is used in this study. Prediction of TEC is important phenomenon to operate and to plan the Earth-space and satellite-to-satellite communication systems, to generate the earthquake precursor signals using TEC and to detect of anomalies in the ionosphere. In this study, IONOLAB-TEC data obtained from GPS is estimated using regression models. Among the tested algorithms, it is observed that the Exponential Gaussian Process Regression and Interactions Linear Regression algorithms are very successful and high-performance models for TEC estimation.
dc.description.urihttps://doi.org/10.2339/politeknik.1137658
dc.description.urihttps://dergipark.org.tr/tr/pub/politeknik/issue/76291/1137658
dc.identifier.doi10.2339/politeknik.1137658
dc.identifier.eissn2147-9429
dc.identifier.endpage328
dc.identifier.openairedoi_dedup___::2a3544ab1f519155e894c48d7b4ad915
dc.identifier.orcid0000-0002-1081-2200
dc.identifier.orcid0000-0002-1942-6728
dc.identifier.orcid0000-0003-2048-1203
dc.identifier.startpage321
dc.identifier.urihttps://hdl.handle.net/20.500.12597/40595
dc.identifier.volume26
dc.identifier.wos000904642500001
dc.publisherPoliteknik Dergisi
dc.relation.ispartofPoliteknik Dergisi
dc.rightsOPEN
dc.subjectEngineering
dc.subjectTotal electron content
dc.subjectmachine learning
dc.subjectprediction
dc.subjectregression
dc.subjectMühendislik
dc.subjectToplam elektron içeriği
dc.subjectmakine öğrenmesi
dc.subjecttahmin
dc.subjectregresyon
dc.subjectTotal electron content
dc.subjectmachine learning
dc.subjectprediction
dc.subjectregression
dc.subject.sdg13. Climate action
dc.subject.sdg7. Clean energy
dc.titleComparison of the Performance of the Regression Models in GPS-Total Electron Content Prediction
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Buse AKYÜZ","name":"Buse","surname":"AKYÜZ","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0002-1081-2200"},"provenance":null}},{"fullName":"Seçil KARATAY","name":"Seçil","surname":"KARATAY","rank":2,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-1942-6728"},"provenance":null}},{"fullName":"Faruk ERKEN","name":"Faruk","surname":"ERKEN","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2048-1203"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Engineering"},"provenance":null},{"subject":{"scheme":"keyword","value":"Total electron content;machine learning;prediction;regression"},"provenance":null},{"subject":{"scheme":"SDG","value":"13. Climate action"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mühendislik"},"provenance":null},{"subject":{"scheme":"keyword","value":"Toplam elektron içeriği;makine öğrenmesi;tahmin;regresyon;Total electron content;machine learning;prediction;regression"},"provenance":null},{"subject":{"scheme":"SDG","value":"7. Clean energy"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"FOS","value":"0105 earth and related environmental sciences"},"provenance":null}],"mainTitle":"Comparison of the Performance of the Regression Models in GPS-Total Electron Content Prediction","subTitle":null,"descriptions":["<jats:p xml:lang=\"en\">The ionosphere is an important layer that provides radio communication in the upper atmosphere. The ionosphere is located between 50 km and 1000 km above the atmosphere. Electron density, which is the most important parameter of the ionosphere, changes depending on location, time, seasons, altitude, solar, geomagnetic and seismic activity. A significant measurable amount of electron density is Total Electron Content (TEC), which is used to probe the structure of the ionosphere and upper atmosphere. The Global Positioning System (GPS), which has a low cost and widespread receiver network is prominent used in TEC estimation. The IONOLAB-TEC data estimated from GPS is used in this study. Prediction of TEC is important phenomenon to operate and to plan the Earth-space and satellite-to-satellite communication systems, to generate the earthquake precursor signals using TEC and to detect of anomalies in the ionosphere. In this study, IONOLAB-TEC data obtained from GPS is estimated using regression models. Among the tested algorithms, it is observed that the Exponential Gaussian Process Regression and Interactions Linear Regression algorithms are very successful and high-performance models for TEC estimation.</jats:p>"],"publicationDate":"2023-03-27","publisher":"Politeknik Dergisi","embargoEndDate":null,"sources":["Crossref","Volume: 26, Issue: 1 321-328","2147-9429","Journal of Polytechnic","Politeknik Dergisi"],"formats":["application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Politeknik Dergisi","issnPrinted":null,"issnOnline":"2147-9429","issnLinking":null,"ep":"328","iss":null,"sp":"321","vol":"26","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::2a3544ab1f519155e894c48d7b4ad915","originalIds":["10.2339/politeknik.1137658","50|doiboost____|2a3544ab1f519155e894c48d7b4ad915","50|tubitakulakb::bd6ec6335a4a088d38f06f591838b8ce","oai:dergipark.org.tr:article/1137658"],"pids":[{"scheme":"doi","value":"10.2339/politeknik.1137658"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.597154e-9,"popularity":3.6780747e-9,"impulse":2,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.2339/politeknik.1137658"}],"type":"Article","urls":["https://doi.org/10.2339/politeknik.1137658"],"publicationDate":"2023-03-27","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.2339/politeknik.1137658"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/politeknik/issue/76291/1137658"],"publicationDate":"2022-06-29","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS

Dosyalar

Koleksiyonlar