Yayın:
Decoding Chemical Profiles, Biological Functions, and Medicinal Properties of Liquidambar orientalis Extracts Through Molecular Modeling and Bioinformatic Methods

dc.contributor.authorBaloglu, Mehmet Cengiz
dc.contributor.authorOzer, Lutfiye Yildiz
dc.contributor.authorPirci, Buket
dc.contributor.authorAltunoglu, Yasemin Celik
dc.contributor.authorSoomro, Sanam Iram
dc.contributor.authorZengin, Gokhan
dc.contributor.authorCetiz, Mehmet Veysi
dc.contributor.authorCarradori, Simone
dc.contributor.authorCziáky, Zoltán
dc.contributor.authorJekő, József
dc.date.accessioned2026-01-04T21:44:47Z
dc.date.issued2025-02-11
dc.description.abstractABSTRACTLiquidambar orientalis, the Anatolian sweetgum tree, is a relict and endemic species in Southwestern Turkey, traditionally used for therapeutic purposes. Our study comprehensively evaluated the therapeutic potential of L. orientalis extracts from its aerial parts to maximize bioactive compound extraction using methanol, ethyl acetate, and water as solvents. The methanolic extract exhibited the highest phenolic (73.04 ± 3.94 mg gallic acid equivalent [GAE]/g) and flavonoid content (48.86 ± 0.76 mg rutin equivalent [RE]/g), demonstrating superior antioxidant activity in 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) (256.61 ± 1.70 mg Trolox equivalent [TE]/g), 2,2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) (308.41 ± 3.14 mg TE/g), and cupric ion–reducing antioxidant capacity (CUPRAC) (411.13 ± 8.48 mg TE/g) assays. It also showed significant enzyme inhibition for acetylcholinesterase (4.43 ± 0.09 mg galanthamine equivalent [GALAE]/g), tyrosinase (149.16 ± 1.14 mg kojic acid equivalent [KAE]/g), amylase (0.93 ± 0.02 mmol acarbose equivalent [ACAE]/g), and glucosidase (1.60 ± 0.01 mmol ACAE/g), suggesting potential applications in neurodegenerative disease management, skincare, and diabetes treatment. Furthermore, methanol and water extracts displayed promising antimicrobial activity due to phenolic compounds such as chlorogenic acid and methyl‐3‐O‐caffeoyl quinate. The methanolic extract exhibited potent anticancer effects against lung cancer (A549) cells, with significant reductions in cell viability and induction of autophagy. The aqueous extract showed remarkable efficacy against prostate cancer (PC3) cells, modulating apoptosis markers. Breast cancer cells (MDA‐MB‐231) exhibited differential responses, with ethyl acetate extract promoting apoptosis and water extract–enhancing autophagy. Furthermore, molecular docking and dynamics simulations provided additional evidence supporting the therapeutic potential of key phytochemicals from L. orientalis, particularly afzelin and epigallocatechin, against cancer‐related targets and bacterial enzymes. Overall, this study fills a gap in understanding the enzyme inhibitory and diverse anticancer effects of L. orientalis extracts, highlighting its potential multi‐targeted therapeutic applications, particularly in cancer therapy.
dc.description.urihttps://doi.org/10.1002/fft2.545
dc.description.urihttps://doaj.org/article/7d30e908172f41058578067d5af7a3d5
dc.description.urihttps://hdl.handle.net/11564/859013
dc.identifier.doi10.1002/fft2.545
dc.identifier.eissn2643-8429
dc.identifier.endpage1408
dc.identifier.issn2643-8429
dc.identifier.openairedoi_dedup___::a204e2ae697a862e7206e4097d64daf4
dc.identifier.orcid0000-0003-2976-7224
dc.identifier.orcid0000-0002-3597-7984
dc.identifier.orcid0000-0001-6548-7823
dc.identifier.orcid0000-0002-2635-6553
dc.identifier.scopus2-s2.0-85218817769
dc.identifier.startpage1376
dc.identifier.urihttps://hdl.handle.net/20.500.12597/42504
dc.identifier.volume6
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofFood Frontiers
dc.rightsOPEN
dc.subjectmulti‐targeted therapies
dc.subjectLiquidambar orientalis
dc.subjectNutrition. Foods and food supply
dc.subjectmolecular docking analysis
dc.subjectantioxidant and antibacterial synergy
dc.subjectLiquidambar orientalis
dc.subjectmolecular docking analysis
dc.subjectmulti-targeted therapies
dc.subjectphytochemical profiling
dc.subjecttherapeutic targets
dc.subjectphytochemical profiling
dc.subjectTX341-641
dc.subjectantioxidant and antibacterial synergy
dc.subjectTP368-456
dc.subjecttherapeutic targets
dc.subjectFood processing and manufacture
dc.titleDecoding Chemical Profiles, Biological Functions, and Medicinal Properties of Liquidambar orientalis Extracts Through Molecular Modeling and Bioinformatic Methods
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Mehmet Cengiz Baloglu","name":"Mehmet Cengiz","surname":"Baloglu","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2976-7224"},"provenance":null}},{"fullName":"Lutfiye Yildiz Ozer","name":"Lutfiye Yildiz","surname":"Ozer","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-3597-7984"},"provenance":null}},{"fullName":"Buket Pirci","name":"Buket","surname":"Pirci","rank":3,"pid":null},{"fullName":"Yasemin Celik Altunoglu","name":"Yasemin Celik","surname":"Altunoglu","rank":4,"pid":null},{"fullName":"Sanam Iram Soomro","name":"Sanam Iram","surname":"Soomro","rank":5,"pid":null},{"fullName":"Gokhan Zengin","name":"Gokhan","surname":"Zengin","rank":6,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0001-6548-7823"},"provenance":null}},{"fullName":"Mehmet Veysi Cetiz","name":"Mehmet Veysi","surname":"Cetiz","rank":7,"pid":{"id":{"scheme":"orcid","value":"0000-0002-2635-6553"},"provenance":null}},{"fullName":"Simone Carradori","name":"Simone","surname":"Carradori","rank":8,"pid":null},{"fullName":"Zoltán Cziáky","name":"Zoltán","surname":"Cziáky","rank":9,"pid":null},{"fullName":"József Jekő","name":"József","surname":"Jekő","rank":10,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"multi‐targeted therapies"},"provenance":null},{"subject":{"scheme":"keyword","value":"Liquidambar orientalis"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nutrition. Foods and food supply"},"provenance":null},{"subject":{"scheme":"keyword","value":"molecular docking analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"antioxidant and antibacterial synergy; Liquidambar orientalis; molecular docking analysis; multi-targeted therapies; phytochemical profiling; therapeutic targets"},"provenance":null},{"subject":{"scheme":"keyword","value":"phytochemical profiling"},"provenance":null},{"subject":{"scheme":"keyword","value":"TX341-641"},"provenance":null},{"subject":{"scheme":"keyword","value":"antioxidant and antibacterial synergy"},"provenance":null},{"subject":{"scheme":"keyword","value":"TP368-456"},"provenance":null},{"subject":{"scheme":"keyword","value":"therapeutic targets"},"provenance":null},{"subject":{"scheme":"keyword","value":"Food processing and manufacture"},"provenance":null}],"mainTitle":"Decoding Chemical Profiles, Biological Functions, and Medicinal Properties of <i>Liquidambar orientalis</i> Extracts Through Molecular Modeling and Bioinformatic Methods","subTitle":null,"descriptions":["<jats:title>ABSTRACT</jats:title><jats:p><jats:italic>Liquidambar orientalis</jats:italic>, the Anatolian sweetgum tree, is a relict and endemic species in Southwestern Turkey, traditionally used for therapeutic purposes. Our study comprehensively evaluated the therapeutic potential of <jats:italic>L. orientalis</jats:italic> extracts from its aerial parts to maximize bioactive compound extraction using methanol, ethyl acetate, and water as solvents. The methanolic extract exhibited the highest phenolic (73.04 ± 3.94 mg gallic acid equivalent [GAE]/g) and flavonoid content (48.86 ± 0.76 mg rutin equivalent [RE]/g), demonstrating superior antioxidant activity in 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) (256.61 ± 1.70 mg Trolox equivalent [TE]/g), 2,2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) (308.41 ± 3.14 mg TE/g), and cupric ion–reducing antioxidant capacity (CUPRAC) (411.13 ± 8.48 mg TE/g) assays. It also showed significant enzyme inhibition for acetylcholinesterase (4.43 ± 0.09 mg galanthamine equivalent [GALAE]/g), tyrosinase (149.16 ± 1.14 mg kojic acid equivalent [KAE]/g), amylase (0.93 ± 0.02 mmol acarbose equivalent [ACAE]/g), and glucosidase (1.60 ± 0.01 mmol ACAE/g), suggesting potential applications in neurodegenerative disease management, skincare, and diabetes treatment. Furthermore, methanol and water extracts displayed promising antimicrobial activity due to phenolic compounds such as chlorogenic acid and methyl‐3‐<jats:italic>O</jats:italic>‐caffeoyl quinate. The methanolic extract exhibited potent anticancer effects against lung cancer (A549) cells, with significant reductions in cell viability and induction of autophagy. The aqueous extract showed remarkable efficacy against prostate cancer (PC3) cells, modulating apoptosis markers. Breast cancer cells (MDA‐MB‐231) exhibited differential responses, with ethyl acetate extract promoting apoptosis and water extract–enhancing autophagy. Furthermore, molecular docking and dynamics simulations provided additional evidence supporting the therapeutic potential of key phytochemicals from <jats:italic>L. orientalis</jats:italic>, particularly afzelin and epigallocatechin, against cancer‐related targets and bacterial enzymes. Overall, this study fills a gap in understanding the enzyme inhibitory and diverse anticancer effects of <jats:italic>L. orientalis</jats:italic> extracts, highlighting its potential multi‐targeted therapeutic applications, particularly in cancer therapy.</jats:p>"],"publicationDate":"2025-02-11","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref","Food Frontiers, Vol 6, Iss 3, Pp 1376-1408 (2025)"],"formats":["application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Food Frontiers","issnPrinted":"2643-8429","issnOnline":"2643-8429","issnLinking":null,"ep":"1408","iss":null,"sp":"1376","vol":"6","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::a204e2ae697a862e7206e4097d64daf4","originalIds":["10.1002/fft2.545","50|doiboost____|a204e2ae697a862e7206e4097d64daf4","50|doajarticles::edd2969fbef44eed98167ef8ab924d46","oai:doaj.org/article:7d30e908172f41058578067d5af7a3d5","50|od_____10367::47bd9bca2af52d66ae8d34dd74e74b8d","oai:ricerca.unich.it:11564/859013"],"pids":[{"scheme":"doi","value":"10.1002/fft2.545"},{"scheme":"handle","value":"11564/859013"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":5,"influence":2.6383684e-9,"popularity":6.695671e-9,"impulse":5,"citationClass":"C5","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1002/fft2.545"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.1002/fft2.545"],"publicationDate":"2025-02-11","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/fft2.545"}],"type":"Article","urls":["https://doaj.org/article/7d30e908172f41058578067d5af7a3d5"],"publicationDate":"2025-05-01","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"11564/859013"}],"alternateIdentifiers":[{"scheme":"urn","value":"2-s2.0-85218817769"},{"scheme":"doi","value":"10.1002/fft2.545"},{"scheme":"urn","value":"WOS:001419062000001"},{"scheme":"urn","value":"https://hdl.handle.net/11564/859013"}],"type":"Article","urls":["https://hdl.handle.net/11564/859013","https://doi.org/10.1002/fft2.545"],"publicationDate":"2025-01-01","refereed":"nonPeerReviewed"}],"isGreen":true,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atScopus

Dosyalar

Koleksiyonlar