Yayın: New Exact Traveling Wave Solutions of the Unstable Nonlinear Schrödinger Equations
| dc.contributor.author | K., Hosseini | |
| dc.contributor.author | D., Kumar | |
| dc.contributor.author | M., Kaplan | |
| dc.contributor.author | E. Yazdani, Bejarbaneh | |
| dc.date.accessioned | 2026-01-03T10:15:41Z | |
| dc.date.issued | 2017-12-01 | |
| dc.description.abstract | Abstract The present paper studies the unstable nonlinear Schrödinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schrödinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schrödinger equation and its modified form are formally obtained. | |
| dc.description.uri | https://doi.org/10.1088/0253-6102/68/6/761 | |
| dc.description.uri | https://zbmath.org/6849472 | |
| dc.description.uri | https://dx.doi.org/10.1088/0253-6102/68/6/761 | |
| dc.identifier.doi | 10.1088/0253-6102/68/6/761 | |
| dc.identifier.eissn | 1572-9494 | |
| dc.identifier.issn | 0253-6102 | |
| dc.identifier.openaire | doi_dedup___::7d703aa38ddbee5d0aaf146c1e3f9fce | |
| dc.identifier.orcid | 0000-0003-2949-166x | |
| dc.identifier.orcid | 0000-0001-5700-9127 | |
| dc.identifier.orcid | 0000-0001-7924-1488 | |
| dc.identifier.scopus | 2-s2.0-105019267534 | |
| dc.identifier.startpage | 761 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/36592 | |
| dc.identifier.volume | 68 | |
| dc.identifier.wos | 000417813600010 | |
| dc.publisher | IOP Publishing | |
| dc.relation.ispartof | Communications in Theoretical Physics | |
| dc.rights | CLOSED | |
| dc.subject | modified unstable nonlinear Schrödinger equation | |
| dc.subject | modified Kudryashov method | |
| dc.subject | KdV equations (Korteweg-de Vries equations) | |
| dc.subject | sine-Gordon expansion approach | |
| dc.subject | Soliton solutions | |
| dc.subject | NLS equations (nonlinear Schrödinger equations) | |
| dc.subject | unstable nonlinear Schrödinger equation | |
| dc.subject | Traveling wave solutions | |
| dc.subject | new exact traveling wave solutions | |
| dc.title | New Exact Traveling Wave Solutions of the Unstable Nonlinear Schrödinger Equations | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Hosseini, K.","name":"Hosseini","surname":"K.","rank":1,"pid":null},{"fullName":"Kumar, D.","name":"Kumar","surname":"D.","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2949-166x"},"provenance":null}},{"fullName":"Kaplan, M.","name":"Kaplan","surname":"M.","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Bejarbaneh, E. Yazdani","name":"Bejarbaneh","surname":"E. Yazdani","rank":4,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7924-1488"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"modified unstable nonlinear Schrödinger equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"modified Kudryashov method"},"provenance":null},{"subject":{"scheme":"keyword","value":"KdV equations (Korteweg-de Vries equations)"},"provenance":null},{"subject":{"scheme":"keyword","value":"sine-Gordon expansion approach"},"provenance":null},{"subject":{"scheme":"keyword","value":"Soliton solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"NLS equations (nonlinear Schrödinger equations)"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"unstable nonlinear Schrödinger equation"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Traveling wave solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"new exact traveling wave solutions"},"provenance":null}],"mainTitle":"New Exact Traveling Wave Solutions of the Unstable Nonlinear Schrödinger Equations","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title> <jats:p> <jats:italic>The present paper studies the unstable nonlinear Schrödinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schrödinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schrödinger equation and its modified form are formally obtained.</jats:italic> </jats:p>"],"publicationDate":"2017-12-01","publisher":"IOP Publishing","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Communications in Theoretical Physics","issnPrinted":"0253-6102","issnOnline":"1572-9494","issnLinking":null,"ep":null,"iss":null,"sp":"761","vol":"68","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::7d703aa38ddbee5d0aaf146c1e3f9fce","originalIds":["10.1088/0253-6102/68/6/761","50|doiboost____|7d703aa38ddbee5d0aaf146c1e3f9fce","oai:zbmath.org:6849472","50|c2b0b933574d::c63bbe2f4fe3aae89e283915673d11c1","2775378605"],"pids":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":114,"influence":8.300164e-9,"popularity":6.267625e-8,"impulse":48,"citationClass":"C3","influenceClass":"C4","impulseClass":"C3","popularityClass":"C3"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"}],"license":"IOP Copyright Policies","type":"Article","urls":["https://doi.org/10.1088/0253-6102/68/6/761"],"publicationDate":"2017-12-01","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"}],"type":"Article","urls":["https://doi.org/10.1088/0253-6102/68/6/761","https://zbmath.org/6849472"],"publicationDate":"2017-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"},{"scheme":"mag_id","value":"2775378605"}],"type":"Article","urls":["https://dx.doi.org/10.1088/0253-6102/68/6/761"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
