Yayın:
New Exact Traveling Wave Solutions of the Unstable Nonlinear Schrödinger Equations

dc.contributor.authorK., Hosseini
dc.contributor.authorD., Kumar
dc.contributor.authorM., Kaplan
dc.contributor.authorE. Yazdani, Bejarbaneh
dc.date.accessioned2026-01-03T10:15:41Z
dc.date.issued2017-12-01
dc.description.abstractAbstract The present paper studies the unstable nonlinear Schrödinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schrödinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schrödinger equation and its modified form are formally obtained.
dc.description.urihttps://doi.org/10.1088/0253-6102/68/6/761
dc.description.urihttps://zbmath.org/6849472
dc.description.urihttps://dx.doi.org/10.1088/0253-6102/68/6/761
dc.identifier.doi10.1088/0253-6102/68/6/761
dc.identifier.eissn1572-9494
dc.identifier.issn0253-6102
dc.identifier.openairedoi_dedup___::7d703aa38ddbee5d0aaf146c1e3f9fce
dc.identifier.orcid0000-0003-2949-166x
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.orcid0000-0001-7924-1488
dc.identifier.scopus2-s2.0-105019267534
dc.identifier.startpage761
dc.identifier.urihttps://hdl.handle.net/20.500.12597/36592
dc.identifier.volume68
dc.identifier.wos000417813600010
dc.publisherIOP Publishing
dc.relation.ispartofCommunications in Theoretical Physics
dc.rightsCLOSED
dc.subjectmodified unstable nonlinear Schrödinger equation
dc.subjectmodified Kudryashov method
dc.subjectKdV equations (Korteweg-de Vries equations)
dc.subjectsine-Gordon expansion approach
dc.subjectSoliton solutions
dc.subjectNLS equations (nonlinear Schrödinger equations)
dc.subjectunstable nonlinear Schrödinger equation
dc.subjectTraveling wave solutions
dc.subjectnew exact traveling wave solutions
dc.titleNew Exact Traveling Wave Solutions of the Unstable Nonlinear Schrödinger Equations
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Hosseini, K.","name":"Hosseini","surname":"K.","rank":1,"pid":null},{"fullName":"Kumar, D.","name":"Kumar","surname":"D.","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2949-166x"},"provenance":null}},{"fullName":"Kaplan, M.","name":"Kaplan","surname":"M.","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Bejarbaneh, E. Yazdani","name":"Bejarbaneh","surname":"E. Yazdani","rank":4,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7924-1488"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"modified unstable nonlinear Schrödinger equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"modified Kudryashov method"},"provenance":null},{"subject":{"scheme":"keyword","value":"KdV equations (Korteweg-de Vries equations)"},"provenance":null},{"subject":{"scheme":"keyword","value":"sine-Gordon expansion approach"},"provenance":null},{"subject":{"scheme":"keyword","value":"Soliton solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"NLS equations (nonlinear Schrödinger equations)"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"unstable nonlinear Schrödinger equation"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Traveling wave solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"new exact traveling wave solutions"},"provenance":null}],"mainTitle":"New Exact Traveling Wave Solutions of the Unstable Nonlinear Schrödinger Equations","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title> <jats:p> <jats:italic>The present paper studies the unstable nonlinear Schrödinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schrödinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schrödinger equation and its modified form are formally obtained.</jats:italic> </jats:p>"],"publicationDate":"2017-12-01","publisher":"IOP Publishing","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Communications in Theoretical Physics","issnPrinted":"0253-6102","issnOnline":"1572-9494","issnLinking":null,"ep":null,"iss":null,"sp":"761","vol":"68","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::7d703aa38ddbee5d0aaf146c1e3f9fce","originalIds":["10.1088/0253-6102/68/6/761","50|doiboost____|7d703aa38ddbee5d0aaf146c1e3f9fce","oai:zbmath.org:6849472","50|c2b0b933574d::c63bbe2f4fe3aae89e283915673d11c1","2775378605"],"pids":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":114,"influence":8.300164e-9,"popularity":6.267625e-8,"impulse":48,"citationClass":"C3","influenceClass":"C4","impulseClass":"C3","popularityClass":"C3"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"}],"license":"IOP Copyright Policies","type":"Article","urls":["https://doi.org/10.1088/0253-6102/68/6/761"],"publicationDate":"2017-12-01","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"}],"type":"Article","urls":["https://doi.org/10.1088/0253-6102/68/6/761","https://zbmath.org/6849472"],"publicationDate":"2017-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1088/0253-6102/68/6/761"},{"scheme":"mag_id","value":"2775378605"}],"type":"Article","urls":["https://dx.doi.org/10.1088/0253-6102/68/6/761"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar