Yayın:
Inverse scattering problem with Levinson formula for eigenparameter‐dependent discrete Sturm–Liouville equation

dc.contributor.authorKoprubasi, Turhan
dc.contributor.authorMohapatra, Ram N.
dc.date.accessioned2026-01-04T17:08:04Z
dc.date.issued2022-08-11
dc.description.abstractIn this paper, an inverse scattering problem for discrete Sturm–Liouville equation with eigenparameter‐dependent boundary condition is investigated. In quest of finding scattering function and the main equation of this problem, the uniqueness of the kernel is proven. Also, an appropriate Levinson‐type formula based on the continuity of scattering function is given.
dc.description.urihttps://doi.org/10.1002/mma.8590
dc.description.urihttps://zbmath.org/7781259
dc.identifier.doi10.1002/mma.8590
dc.identifier.eissn1099-1476
dc.identifier.endpage1478
dc.identifier.issn0170-4214
dc.identifier.openairedoi_dedup___::1b4a47476660fa600c7e33a58d3ab2e8
dc.identifier.orcid0000-0003-1551-1527
dc.identifier.orcid0000-0002-5502-3934
dc.identifier.scopus2-s2.0-85135625843
dc.identifier.startpage1466
dc.identifier.urihttps://hdl.handle.net/20.500.12597/39918
dc.identifier.volume46
dc.identifier.wos000838581000001
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofMathematical Methods in the Applied Sciences
dc.rightsCLOSED
dc.subjectSturm-Liouville theory
dc.subjectscattering function
dc.subjectScattering theory, inverse scattering involving ordinary differential operators
dc.subjectBoundary value problems for difference equations
dc.subjecteigenparameter
dc.subjectDiscrete version of topics in analysis
dc.subjectDifference operators
dc.subjectdiscrete equation
dc.subjectLevinson formula
dc.subjectSturm-Liouville problem
dc.titleInverse scattering problem with Levinson formula for eigenparameter‐dependent discrete Sturm–Liouville equation
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Turhan Koprubasi","name":"Turhan","surname":"Koprubasi","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-1551-1527"},"provenance":null}},{"fullName":"Ram N. Mohapatra","name":"Ram N.","surname":"Mohapatra","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-5502-3934"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":null,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Sturm-Liouville theory"},"provenance":null},{"subject":{"scheme":"keyword","value":"scattering function"},"provenance":null},{"subject":{"scheme":"keyword","value":"Scattering theory, inverse scattering involving ordinary differential operators"},"provenance":null},{"subject":{"scheme":"keyword","value":"Boundary value problems for difference equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"eigenparameter"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete version of topics in analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"Difference operators"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"discrete equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Levinson formula"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Sturm-Liouville problem"},"provenance":null}],"mainTitle":"Inverse scattering problem with Levinson formula for eigenparameter‐dependent discrete Sturm–Liouville equation","subTitle":null,"descriptions":["<jats:p>In this paper, an inverse scattering problem for discrete Sturm–Liouville equation with eigenparameter‐dependent boundary condition is investigated. In quest of finding scattering function and the main equation of this problem, the uniqueness of the kernel is proven. Also, an appropriate Levinson‐type formula based on the continuity of scattering function is given.</jats:p>"],"publicationDate":"2022-08-11","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematical Methods in the Applied Sciences","issnPrinted":"0170-4214","issnOnline":"1099-1476","issnLinking":null,"ep":"1478","iss":null,"sp":"1466","vol":"46","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::1b4a47476660fa600c7e33a58d3ab2e8","originalIds":["10.1002/mma.8590","50|doiboost____|1b4a47476660fa600c7e33a58d3ab2e8","50|c2b0b933574d::0a8cfa0bd718a76862e881ad7ff084bc","oai:zbmath.org:7781259"],"pids":[{"scheme":"doi","value":"10.1002/mma.8590"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.9362863e-9,"popularity":3.5368792e-9,"impulse":2,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1002/mma.8590"}],"license":"Wiley Online Library User Agreement","type":"Article","urls":["https://doi.org/10.1002/mma.8590"],"publicationDate":"2022-08-11","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/mma.8590"}],"type":"Article","urls":["https://zbmath.org/7781259","https://doi.org/10.1002/mma.8590"],"publicationDate":"2023-01-01","refereed":"nonPeerReviewed"}],"isGreen":null,"isInDiamondJournal":null}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar