Yayın: Inverse scattering problem with Levinson formula for eigenparameter‐dependent discrete Sturm–Liouville equation
| dc.contributor.author | Koprubasi, Turhan | |
| dc.contributor.author | Mohapatra, Ram N. | |
| dc.date.accessioned | 2026-01-04T17:08:04Z | |
| dc.date.issued | 2022-08-11 | |
| dc.description.abstract | In this paper, an inverse scattering problem for discrete Sturm–Liouville equation with eigenparameter‐dependent boundary condition is investigated. In quest of finding scattering function and the main equation of this problem, the uniqueness of the kernel is proven. Also, an appropriate Levinson‐type formula based on the continuity of scattering function is given. | |
| dc.description.uri | https://doi.org/10.1002/mma.8590 | |
| dc.description.uri | https://zbmath.org/7781259 | |
| dc.identifier.doi | 10.1002/mma.8590 | |
| dc.identifier.eissn | 1099-1476 | |
| dc.identifier.endpage | 1478 | |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.openaire | doi_dedup___::1b4a47476660fa600c7e33a58d3ab2e8 | |
| dc.identifier.orcid | 0000-0003-1551-1527 | |
| dc.identifier.orcid | 0000-0002-5502-3934 | |
| dc.identifier.scopus | 2-s2.0-85135625843 | |
| dc.identifier.startpage | 1466 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/39918 | |
| dc.identifier.volume | 46 | |
| dc.identifier.wos | 000838581000001 | |
| dc.language.iso | eng | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | Mathematical Methods in the Applied Sciences | |
| dc.rights | CLOSED | |
| dc.subject | Sturm-Liouville theory | |
| dc.subject | scattering function | |
| dc.subject | Scattering theory, inverse scattering involving ordinary differential operators | |
| dc.subject | Boundary value problems for difference equations | |
| dc.subject | eigenparameter | |
| dc.subject | Discrete version of topics in analysis | |
| dc.subject | Difference operators | |
| dc.subject | discrete equation | |
| dc.subject | Levinson formula | |
| dc.subject | Sturm-Liouville problem | |
| dc.title | Inverse scattering problem with Levinson formula for eigenparameter‐dependent discrete Sturm–Liouville equation | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Turhan Koprubasi","name":"Turhan","surname":"Koprubasi","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-1551-1527"},"provenance":null}},{"fullName":"Ram N. Mohapatra","name":"Ram N.","surname":"Mohapatra","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-5502-3934"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":null,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Sturm-Liouville theory"},"provenance":null},{"subject":{"scheme":"keyword","value":"scattering function"},"provenance":null},{"subject":{"scheme":"keyword","value":"Scattering theory, inverse scattering involving ordinary differential operators"},"provenance":null},{"subject":{"scheme":"keyword","value":"Boundary value problems for difference equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"eigenparameter"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete version of topics in analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"Difference operators"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"discrete equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Levinson formula"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Sturm-Liouville problem"},"provenance":null}],"mainTitle":"Inverse scattering problem with Levinson formula for eigenparameter‐dependent discrete Sturm–Liouville equation","subTitle":null,"descriptions":["<jats:p>In this paper, an inverse scattering problem for discrete Sturm–Liouville equation with eigenparameter‐dependent boundary condition is investigated. In quest of finding scattering function and the main equation of this problem, the uniqueness of the kernel is proven. Also, an appropriate Levinson‐type formula based on the continuity of scattering function is given.</jats:p>"],"publicationDate":"2022-08-11","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematical Methods in the Applied Sciences","issnPrinted":"0170-4214","issnOnline":"1099-1476","issnLinking":null,"ep":"1478","iss":null,"sp":"1466","vol":"46","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::1b4a47476660fa600c7e33a58d3ab2e8","originalIds":["10.1002/mma.8590","50|doiboost____|1b4a47476660fa600c7e33a58d3ab2e8","50|c2b0b933574d::0a8cfa0bd718a76862e881ad7ff084bc","oai:zbmath.org:7781259"],"pids":[{"scheme":"doi","value":"10.1002/mma.8590"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.9362863e-9,"popularity":3.5368792e-9,"impulse":2,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1002/mma.8590"}],"license":"Wiley Online Library User Agreement","type":"Article","urls":["https://doi.org/10.1002/mma.8590"],"publicationDate":"2022-08-11","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/mma.8590"}],"type":"Article","urls":["https://zbmath.org/7781259","https://doi.org/10.1002/mma.8590"],"publicationDate":"2023-01-01","refereed":"nonPeerReviewed"}],"isGreen":null,"isInDiamondJournal":null} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
