Yayın: LUNG CANCER DETECTION BY HYBRID LEARNING METHOD APPLYING SMOTE TECHNIQUE
| dc.contributor.author | SUİÇMEZ, Alihan | |
| dc.contributor.author | SUİÇMEZ, Çağrı | |
| dc.contributor.author | TEPE, Cengiz | |
| dc.date.accessioned | 2026-01-05T23:29:02Z | |
| dc.date.issued | 2022-12-30 | |
| dc.description.abstract | Lung cancer is a very deadly disease. However, early diagnosis and detection is an essential factor in overcoming this deadly disease. Tumors formed in this disease's initial stage are divided into benign and malignant. These can be visualized using a computed tomography (CT) scan. Thanks to machine learning and deep learning, cancer stages can be detected using these images. In our study, the best and most promising results in the literature were obtained by using a hybrid learning architecture. The data mining techniques we use in obtaining these results also play a significant role. The best accuracy result we obtained belongs to the CNN+GBC hybrid algorithm, which we recommend with 99.71%. | |
| dc.description.uri | https://doi.org/10.29109/gujsc.1201819 | |
| dc.description.uri | https://doaj.org/article/b8a7d8e96b7b478a8af59b6b341fbbce | |
| dc.description.uri | https://dergipark.org.tr/tr/pub/gujsc/issue/74502/1201819 | |
| dc.identifier.doi | 10.29109/gujsc.1201819 | |
| dc.identifier.eissn | 2147-9526 | |
| dc.identifier.endpage | 1110 | |
| dc.identifier.openaire | doi_dedup___::d3d94d9f9ac3cd0d5d05c6b5ec528b21 | |
| dc.identifier.orcid | 0000-0002-0502-6547 | |
| dc.identifier.orcid | 0000-0002-9709-2276 | |
| dc.identifier.orcid | 0000-0003-4065-5207 | |
| dc.identifier.startpage | 1098 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/43824 | |
| dc.identifier.volume | 10 | |
| dc.publisher | Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji | |
| dc.relation.ispartof | Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji | |
| dc.rights | OPEN | |
| dc.subject | Science (General) | |
| dc.subject | Science | |
| dc.subject | Q | |
| dc.subject | Mühendislik | |
| dc.subject | deep learning | |
| dc.subject | lung cancer detection | |
| dc.subject | hybrit learning | |
| dc.subject | Engineering (General). Civil engineering (General) | |
| dc.subject | Q1-390 | |
| dc.subject | Engineering | |
| dc.subject | Lung cancer detection | |
| dc.subject | deep learning | |
| dc.subject | hybrit learning | |
| dc.subject | classification | |
| dc.subject | classification | |
| dc.subject | TA1-2040 | |
| dc.subject.sdg | 3. Good health | |
| dc.title | LUNG CANCER DETECTION BY HYBRID LEARNING METHOD APPLYING SMOTE TECHNIQUE | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Alihan SUİÇMEZ","name":"Alihan","surname":"SUİÇMEZ","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-0502-6547"},"provenance":null}},{"fullName":"Çağrı SUİÇMEZ","name":"Çağrı","surname":"SUİÇMEZ","rank":2,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-9709-2276"},"provenance":null}},{"fullName":"Cengiz TEPE","name":"Cengiz","surname":"TEPE","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0003-4065-5207"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Science (General)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Science"},"provenance":null},{"subject":{"scheme":"keyword","value":"Q"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mühendislik"},"provenance":null},{"subject":{"scheme":"FOS","value":"0211 other engineering and technologies"},"provenance":null},{"subject":{"scheme":"keyword","value":"deep learning"},"provenance":null},{"subject":{"scheme":"keyword","value":"lung cancer detection"},"provenance":null},{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"keyword","value":"hybrit learning"},"provenance":null},{"subject":{"scheme":"keyword","value":"Engineering (General). Civil engineering (General)"},"provenance":null},{"subject":{"scheme":"SDG","value":"3. Good health"},"provenance":null},{"subject":{"scheme":"keyword","value":"Q1-390"},"provenance":null},{"subject":{"scheme":"keyword","value":"Engineering"},"provenance":null},{"subject":{"scheme":"keyword","value":"Lung cancer detection;deep learning;hybrit learning;classification"},"provenance":null},{"subject":{"scheme":"keyword","value":"classification"},"provenance":null},{"subject":{"scheme":"FOS","value":"0202 electrical engineering, electronic engineering, information engineering"},"provenance":null},{"subject":{"scheme":"keyword","value":"TA1-2040"},"provenance":null}],"mainTitle":"LUNG CANCER DETECTION BY HYBRID LEARNING METHOD APPLYING SMOTE TECHNIQUE","subTitle":null,"descriptions":["<jats:p xml:lang=\"en\">Lung cancer is a very deadly disease. However, early diagnosis and detection is an essential factor in overcoming this deadly disease. Tumors formed in this disease's initial stage are divided into benign and malignant. These can be visualized using a computed tomography (CT) scan. Thanks to machine learning and deep learning, cancer stages can be detected using these images. In our study, the best and most promising results in the literature were obtained by using a hybrid learning architecture. The data mining techniques we use in obtaining these results also play a significant role. The best accuracy result we obtained belongs to the CNN+GBC hybrid algorithm, which we recommend with 99.71%.</jats:p>"],"publicationDate":"2022-12-30","publisher":"Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji","embargoEndDate":null,"sources":["Crossref","Gazi Üniversitesi Fen Bilimleri Dergisi, Vol 10, Iss 4, Pp 1098-1110 (2022)","Volume: 10, Issue: 4 1098-1110","2147-9526","Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji","Gazi University Journal of Science Part C: Design and Technology"],"formats":["application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji","issnPrinted":null,"issnOnline":"2147-9526","issnLinking":null,"ep":"1110","iss":null,"sp":"1098","vol":"10","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::d3d94d9f9ac3cd0d5d05c6b5ec528b21","originalIds":["10.29109/gujsc.1201819","50|doiboost____|d3d94d9f9ac3cd0d5d05c6b5ec528b21","50|doajarticles::393e0beb0257574e3d6c4401214ae986","oai:doaj.org/article:b8a7d8e96b7b478a8af59b6b341fbbce","50|tubitakulakb::9bde58ba6744ccf4261178b366dab72a","oai:dergipark.org.tr:article/1201819"],"pids":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":1,"influence":2.5982967e-9,"popularity":2.6346847e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"type":"Article","urls":["https://doi.org/10.29109/gujsc.1201819"],"publicationDate":"2022-12-30","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"type":"Article","urls":["https://doaj.org/article/b8a7d8e96b7b478a8af59b6b341fbbce"],"publicationDate":"2022-12-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/gujsc/issue/74502/1201819"],"publicationDate":"2022-11-09","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire |
