Yayın:
LUNG CANCER DETECTION BY HYBRID LEARNING METHOD APPLYING SMOTE TECHNIQUE

dc.contributor.authorSUİÇMEZ, Alihan
dc.contributor.authorSUİÇMEZ, Çağrı
dc.contributor.authorTEPE, Cengiz
dc.date.accessioned2026-01-05T23:29:02Z
dc.date.issued2022-12-30
dc.description.abstractLung cancer is a very deadly disease. However, early diagnosis and detection is an essential factor in overcoming this deadly disease. Tumors formed in this disease's initial stage are divided into benign and malignant. These can be visualized using a computed tomography (CT) scan. Thanks to machine learning and deep learning, cancer stages can be detected using these images. In our study, the best and most promising results in the literature were obtained by using a hybrid learning architecture. The data mining techniques we use in obtaining these results also play a significant role. The best accuracy result we obtained belongs to the CNN+GBC hybrid algorithm, which we recommend with 99.71%.
dc.description.urihttps://doi.org/10.29109/gujsc.1201819
dc.description.urihttps://doaj.org/article/b8a7d8e96b7b478a8af59b6b341fbbce
dc.description.urihttps://dergipark.org.tr/tr/pub/gujsc/issue/74502/1201819
dc.identifier.doi10.29109/gujsc.1201819
dc.identifier.eissn2147-9526
dc.identifier.endpage1110
dc.identifier.openairedoi_dedup___::d3d94d9f9ac3cd0d5d05c6b5ec528b21
dc.identifier.orcid0000-0002-0502-6547
dc.identifier.orcid0000-0002-9709-2276
dc.identifier.orcid0000-0003-4065-5207
dc.identifier.startpage1098
dc.identifier.urihttps://hdl.handle.net/20.500.12597/43824
dc.identifier.volume10
dc.publisherGazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji
dc.relation.ispartofGazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
dc.rightsOPEN
dc.subjectScience (General)
dc.subjectScience
dc.subjectQ
dc.subjectMühendislik
dc.subjectdeep learning
dc.subjectlung cancer detection
dc.subjecthybrit learning
dc.subjectEngineering (General). Civil engineering (General)
dc.subjectQ1-390
dc.subjectEngineering
dc.subjectLung cancer detection
dc.subjectdeep learning
dc.subjecthybrit learning
dc.subjectclassification
dc.subjectclassification
dc.subjectTA1-2040
dc.subject.sdg3. Good health
dc.titleLUNG CANCER DETECTION BY HYBRID LEARNING METHOD APPLYING SMOTE TECHNIQUE
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Alihan SUİÇMEZ","name":"Alihan","surname":"SUİÇMEZ","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-0502-6547"},"provenance":null}},{"fullName":"Çağrı SUİÇMEZ","name":"Çağrı","surname":"SUİÇMEZ","rank":2,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-9709-2276"},"provenance":null}},{"fullName":"Cengiz TEPE","name":"Cengiz","surname":"TEPE","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0003-4065-5207"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Science (General)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Science"},"provenance":null},{"subject":{"scheme":"keyword","value":"Q"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mühendislik"},"provenance":null},{"subject":{"scheme":"FOS","value":"0211 other engineering and technologies"},"provenance":null},{"subject":{"scheme":"keyword","value":"deep learning"},"provenance":null},{"subject":{"scheme":"keyword","value":"lung cancer detection"},"provenance":null},{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"keyword","value":"hybrit learning"},"provenance":null},{"subject":{"scheme":"keyword","value":"Engineering (General). Civil engineering (General)"},"provenance":null},{"subject":{"scheme":"SDG","value":"3. Good health"},"provenance":null},{"subject":{"scheme":"keyword","value":"Q1-390"},"provenance":null},{"subject":{"scheme":"keyword","value":"Engineering"},"provenance":null},{"subject":{"scheme":"keyword","value":"Lung cancer detection;deep learning;hybrit learning;classification"},"provenance":null},{"subject":{"scheme":"keyword","value":"classification"},"provenance":null},{"subject":{"scheme":"FOS","value":"0202 electrical engineering, electronic engineering, information engineering"},"provenance":null},{"subject":{"scheme":"keyword","value":"TA1-2040"},"provenance":null}],"mainTitle":"LUNG CANCER DETECTION BY HYBRID LEARNING METHOD APPLYING SMOTE TECHNIQUE","subTitle":null,"descriptions":["<jats:p xml:lang=\"en\">Lung cancer is a very deadly disease. However, early diagnosis and detection is an essential factor in overcoming this deadly disease. Tumors formed in this disease's initial stage are divided into benign and malignant. These can be visualized using a computed tomography (CT) scan. Thanks to machine learning and deep learning, cancer stages can be detected using these images. In our study, the best and most promising results in the literature were obtained by using a hybrid learning architecture. The data mining techniques we use in obtaining these results also play a significant role. The best accuracy result we obtained belongs to the CNN+GBC hybrid algorithm, which we recommend with 99.71%.</jats:p>"],"publicationDate":"2022-12-30","publisher":"Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji","embargoEndDate":null,"sources":["Crossref","Gazi Üniversitesi Fen Bilimleri Dergisi, Vol 10, Iss 4, Pp 1098-1110 (2022)","Volume: 10, Issue: 4 1098-1110","2147-9526","Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji","Gazi University Journal of Science Part C: Design and Technology"],"formats":["application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji","issnPrinted":null,"issnOnline":"2147-9526","issnLinking":null,"ep":"1110","iss":null,"sp":"1098","vol":"10","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::d3d94d9f9ac3cd0d5d05c6b5ec528b21","originalIds":["10.29109/gujsc.1201819","50|doiboost____|d3d94d9f9ac3cd0d5d05c6b5ec528b21","50|doajarticles::393e0beb0257574e3d6c4401214ae986","oai:doaj.org/article:b8a7d8e96b7b478a8af59b6b341fbbce","50|tubitakulakb::9bde58ba6744ccf4261178b366dab72a","oai:dergipark.org.tr:article/1201819"],"pids":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":1,"influence":2.5982967e-9,"popularity":2.6346847e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"type":"Article","urls":["https://doi.org/10.29109/gujsc.1201819"],"publicationDate":"2022-12-30","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"type":"Article","urls":["https://doaj.org/article/b8a7d8e96b7b478a8af59b6b341fbbce"],"publicationDate":"2022-12-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.29109/gujsc.1201819"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/gujsc/issue/74502/1201819"],"publicationDate":"2022-11-09","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire

Dosyalar

Koleksiyonlar