Yayın: Approximation Properties of Generalized λ -Bernstein–Stancu-Type Operators
| dc.contributor.author | Cai, Qing-Bo | |
| dc.contributor.author | Torun, Gülten | |
| dc.contributor.author | Dinlemez Kantar, Ülkü | |
| dc.date.accessioned | 2026-01-04T15:21:30Z | |
| dc.date.issued | 2021-05-08 | |
| dc.description.abstract | The present study introduces generalized <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" id="M2"> <a:mi>λ</a:mi> </a:math> -Bernstein–Stancu-type operators with shifted knots. A Korovkin-type approximation theorem is given, and the rate of convergence of these types of operators is obtained for Lipschitz-type functions. Then, a Voronovskaja-type theorem was given for the asymptotic behavior for these operators. Finally, numerical examples and their graphs were given to demonstrate the convergence of <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" id="M3"> <c:msubsup> <c:mrow> <c:mi>G</c:mi> </c:mrow> <c:mrow> <c:mi>m</c:mi> <c:mo>,</c:mo> <c:mi>λ</c:mi> </c:mrow> <c:mrow> <c:mi>α</c:mi> <c:mo>,</c:mo> <c:mi>β</c:mi> </c:mrow> </c:msubsup> <c:mfenced open="(" close=")" separators="|"> <c:mrow> <c:mi>f</c:mi> <c:mo>,</c:mo> <c:mi>x</c:mi> </c:mrow> </c:mfenced> </c:math> to <h:math xmlns:h="http://www.w3.org/1998/Math/MathML" id="M4"> <h:mi>f</h:mi> <h:mfenced open="(" close=")" separators="|"> <h:mrow> <h:mi>x</h:mi> </h:mrow> </h:mfenced> </h:math> with respect to <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" id="M5"> <m:mi>m</m:mi> </m:math> values. | |
| dc.description.uri | https://doi.org/10.1155/2021/5590439 | |
| dc.description.uri | https://downloads.hindawi.com/journals/jmath/2021/5590439.pdf | |
| dc.description.uri | https://zbmath.org/7363832 | |
| dc.description.uri | https://doaj.org/article/c9d75af3001b400d912827020fdc93ac | |
| dc.description.uri | https://dx.doi.org/10.1155/2021/5590439 | |
| dc.description.uri | https://avesis.gazi.edu.tr/publication/details/ae0fb65b-4d39-43cd-9882-6051cb8b3fb5/oai | |
| dc.identifier.doi | 10.1155/2021/5590439 | |
| dc.identifier.eissn | 2314-4785 | |
| dc.identifier.endpage | 17 | |
| dc.identifier.issn | 2314-4629 | |
| dc.identifier.openaire | doi_dedup___::ff54ea8ae9c1f37475285258935bd741 | |
| dc.identifier.orcid | 0000-0003-4759-7441 | |
| dc.identifier.orcid | 0000-0002-1897-0174 | |
| dc.identifier.orcid | 0000-0002-5656-3924 | |
| dc.identifier.scopus | 2-s2.0-85106374197 | |
| dc.identifier.startpage | 1 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/38769 | |
| dc.identifier.volume | 2021 | |
| dc.identifier.wos | 000664926400002 | |
| dc.language.iso | eng | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | Journal of Mathematics | |
| dc.rights | OPEN | |
| dc.subject | QA1-939 | |
| dc.subject | Approximation by positive operators | |
| dc.subject | Approximation by operators (in particular, by integral operators) | |
| dc.subject | Rate of convergence, degree of approximation | |
| dc.subject | Mathematics | |
| dc.subject.sdg | 16. Peace & justice | |
| dc.title | Approximation Properties of Generalized λ -Bernstein–Stancu-Type Operators | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Qing-Bo Cai","name":"Qing-Bo","surname":"Cai","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-4759-7441"},"provenance":null}},{"fullName":"Gülten Torun","name":"Gülten","surname":"Torun","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-1897-0174"},"provenance":null}},{"fullName":"Ülkü Dinlemez Kantar","name":"Ülkü","surname":"Dinlemez Kantar","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0002-5656-3924"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"Approximation by positive operators"},"provenance":null},{"subject":{"scheme":"keyword","value":"Approximation by operators (in particular, by integral operators)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Rate of convergence, degree of approximation"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"SDG","value":"16. Peace & justice"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Approximation Properties of Generalized <a:math xmlns:a=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <a:mi>λ</a:mi> </a:math>-Bernstein–Stancu-Type Operators","subTitle":null,"descriptions":["<jats:p>The present study introduces generalized <jats:inline-formula> <a:math xmlns:a=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <a:mi>λ</a:mi> </a:math> </jats:inline-formula>-Bernstein–Stancu-type operators with shifted knots. A Korovkin-type approximation theorem is given, and the rate of convergence of these types of operators is obtained for Lipschitz-type functions. Then, a Voronovskaja-type theorem was given for the asymptotic behavior for these operators. Finally, numerical examples and their graphs were given to demonstrate the convergence of <jats:inline-formula> <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <c:msubsup> <c:mrow> <c:mi>G</c:mi> </c:mrow> <c:mrow> <c:mi>m</c:mi> <c:mo>,</c:mo> <c:mi>λ</c:mi> </c:mrow> <c:mrow> <c:mi>α</c:mi> <c:mo>,</c:mo> <c:mi>β</c:mi> </c:mrow> </c:msubsup> <c:mfenced open=\"(\" close=\")\" separators=\"|\"> <c:mrow> <c:mi>f</c:mi> <c:mo>,</c:mo> <c:mi>x</c:mi> </c:mrow> </c:mfenced> </c:math> </jats:inline-formula> to <jats:inline-formula> <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <h:mi>f</h:mi> <h:mfenced open=\"(\" close=\")\" separators=\"|\"> <h:mrow> <h:mi>x</h:mi> </h:mrow> </h:mfenced> </h:math> </jats:inline-formula> with respect to <jats:inline-formula> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <m:mi>m</m:mi> </m:math> </jats:inline-formula> values.</jats:p>"],"publicationDate":"2021-05-08","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref","Journal of Mathematics, Vol 2021 (2021)"],"formats":["application/xml","text/xhtml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Journal of Mathematics","issnPrinted":"2314-4629","issnOnline":"2314-4785","issnLinking":null,"ep":"17","iss":null,"sp":"1","vol":"2021","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::ff54ea8ae9c1f37475285258935bd741","originalIds":["5590439","10.1155/2021/5590439","50|doiboost____|ff54ea8ae9c1f37475285258935bd741","oai:zbmath.org:7363832","50|c2b0b933574d::cbc510932366615c4dc7bbfeb74d05cd","50|doajarticles::646bb574515f6e122b5c4a3cef761f7c","oai:doaj.org/article:c9d75af3001b400d912827020fdc93ac","oai:hindawi.com:10.1155/2021/5590439","50|hindawi_publ::0ecffa1bd26626decc7dceed85259a04","3160962945","50|od_____10046::8bcaffa5be48398cbf3433ac6c0db609","ae0fb65b-4d39-43cd-9882-6051cb8b3fb5"],"pids":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":7,"influence":2.9200717e-9,"popularity":7.293108e-9,"impulse":5,"citationClass":"C5","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.1155/2021/5590439"],"publicationDate":"2021-05-08","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"license":"CC BY","type":"Article","urls":["https://downloads.hindawi.com/journals/jmath/2021/5590439.pdf"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"type":"Article","urls":["https://doi.org/10.1155/2021/5590439","https://zbmath.org/7363832"],"publicationDate":"2021-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"type":"Article","urls":["https://doaj.org/article/c9d75af3001b400d912827020fdc93ac"],"publicationDate":"2021-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"type":"Article","urls":["https://doi.org/10.1155/2021/5590439"],"publicationDate":"2021-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2021/5590439"},{"scheme":"mag_id","value":"3160962945"}],"type":"Article","urls":["https://dx.doi.org/10.1155/2021/5590439"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2021/5590439"}],"type":"Article","urls":["https://avesis.gazi.edu.tr/publication/details/ae0fb65b-4d39-43cd-9882-6051cb8b3fb5/oai"],"publicationDate":"2021-05-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
