Yayın:
On Hadamard Product of Hypercomplex Numbers

dc.contributor.authorDa¸sdemir, A.
dc.date.accessioned2026-01-04T16:06:17Z
dc.date.issued2021-12-30
dc.description.abstractCertain product rules take various forms in the set of hypercomplex numbers. In this paper, we introduce a new multiplication form of the hypercomplex numbers that will be called «the Hadamard product», inspired by the analogous product in the real matrix space, and investigate some algebraic properties of that, including the norm of inequality. In particular, we extend our new definition and its applications to the complex matrix theory.
dc.description.urihttps://doi.org/10.31489/2021m4/68-73
dc.description.urihttps://doaj.org/article/27e1c5844c604f0781afae093c1f6500
dc.description.urihttps://doaj.org/article/1712ce0ef9be43b2b198f713b633931c
dc.identifier.doi10.31489/2021m4/68-73
dc.identifier.eissn2663-5011
dc.identifier.endpage73
dc.identifier.issn2518-7929
dc.identifier.openairedoi_dedup___::7a49a67246b540d1cbd29afb81ca225c
dc.identifier.scopus2-s2.0-85153595557
dc.identifier.startpage68
dc.identifier.urihttps://hdl.handle.net/20.500.12597/39276
dc.identifier.volume104
dc.identifier.wos000750055900007
dc.publisherKaragandy University of the name of academician E.A. Buketov
dc.relation.ispartofBULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS
dc.rightsOPEN
dc.subjectQuaternion product
dc.subjecthypercomplex number
dc.subjectQA299.6-433
dc.subjectHadamard product
dc.subjectdot product
dc.subjectQA801-939
dc.subjectAnalytic mechanics
dc.subjectProbabilities. Mathematical statistics
dc.subjectAnalysis
dc.subjectQA273-280
dc.titleOn Hadamard Product of Hypercomplex Numbers
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"A. Da¸sdemir","name":"A.","surname":"Da¸sdemir","rank":1,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Quaternion product"},"provenance":null},{"subject":{"scheme":"keyword","value":"hypercomplex number"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA299.6-433"},"provenance":null},{"subject":{"scheme":"keyword","value":"Hadamard product"},"provenance":null},{"subject":{"scheme":"keyword","value":"dot product"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA801-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"Analytic mechanics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Probabilities. Mathematical statistics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA273-280"},"provenance":null}],"mainTitle":"On Hadamard Product of Hypercomplex Numbers","subTitle":null,"descriptions":["<jats:p>Certain product rules take various forms in the set of hypercomplex numbers. In this paper, we introduce a new multiplication form of the hypercomplex numbers that will be called «the Hadamard product», inspired by the analogous product in the real matrix space, and investigate some algebraic properties of that, including the norm of inequality. In particular, we extend our new definition and its applications to the complex matrix theory.</jats:p>"],"publicationDate":"2021-12-30","publisher":"Karagandy University of the name of academician E.A. Buketov","embargoEndDate":null,"sources":["Crossref","Қарағанды университетінің хабаршысы. Математика сериясы, Vol 104, Iss 4 (2021)","Қарағанды университетінің хабаршысы. Математика сериясы, Vol 104, Iss 4, Pp 68-73 (2021)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS","issnPrinted":"2518-7929","issnOnline":"2663-5011","issnLinking":null,"ep":"73","iss":null,"sp":"68","vol":"104","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::7a49a67246b540d1cbd29afb81ca225c","originalIds":["10.31489/2021m4/68-73","50|doiboost____|7a49a67246b540d1cbd29afb81ca225c","oai:doaj.org/article:27e1c5844c604f0781afae093c1f6500","50|doajarticles::217eec8ce60f790d46028f5646b1a1d8","oai:doaj.org/article:1712ce0ef9be43b2b198f713b633931c","50|doajarticles::95012f8890b90df2050d728dce893c15"],"pids":[{"scheme":"doi","value":"10.31489/2021m4/68-73"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":1.6119823e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.31489/2021m4/68-73"}],"type":"Article","urls":["https://doi.org/10.31489/2021m4/68-73"],"publicationDate":"2021-12-30","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.31489/2021m4/68-73"}],"type":"Article","urls":["https://doi.org/10.31489/2021m4/68-73"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31489/2021m4/68-73"}],"type":"Article","urls":["https://doaj.org/article/27e1c5844c604f0781afae093c1f6500"],"publicationDate":"2021-12-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31489/2021m4/68-73"}],"type":"Article","urls":["https://doaj.org/article/1712ce0ef9be43b2b198f713b633931c"],"publicationDate":"2021-12-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar