Yayın:
Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation

dc.contributor.authorKaplan, Melike
dc.contributor.authorOzer, Mehmet Naci
dc.date.accessioned2026-01-03T10:14:36Z
dc.date.issued2017-11-30
dc.description.abstractThe mathematical modelling of physical systems is generally expressed by nonlinear evolution equations. Therefore, it is critical to obtain solutions to these equations. We have employed the Hirota’s method to derive multiple soliton solutions to (2+1)-dimensional nonlinear evolution equation. Then we have studied the transformed rational function method to construct different types of analytical solutions to the nonlinear evolution equations. This algorithm provides a more convenient and systematical handling of the solution process of nonlinear evolution equations, unifying the homogeneous balance method, the mapping method, the tanh-function method, the F-expansion method and the exp-function method.
dc.description.urihttps://doi.org/10.1007/s11082-017-1270-6
dc.description.urihttps://dx.doi.org/10.1007/s11082-017-1270-6
dc.identifier.doi10.1007/s11082-017-1270-6
dc.identifier.eissn1572-817X
dc.identifier.issn0306-8919
dc.identifier.openairedoi_dedup___::636727f299fd9e4d7f580206ec431520
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85038960785
dc.identifier.urihttps://hdl.handle.net/20.500.12597/36580
dc.identifier.volume50
dc.identifier.wos000422747300008
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofOptical and Quantum Electronics
dc.rightsCLOSED
dc.subject.sdg16. Peace & justice
dc.titleMultiple-soliton solutions and analytical solutions to a nonlinear evolution equation
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Mehmet Naci Ozer","name":"Mehmet Naci","surname":"Ozer","rank":2,"pid":null}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"SDG","value":"16. Peace & justice"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation","subTitle":null,"descriptions":["The mathematical modelling of physical systems is generally expressed by nonlinear evolution equations. Therefore, it is critical to obtain solutions to these equations. We have employed the Hirota’s method to derive multiple soliton solutions to (2+1)-dimensional nonlinear evolution equation. Then we have studied the transformed rational function method to construct different types of analytical solutions to the nonlinear evolution equations. This algorithm provides a more convenient and systematical handling of the solution process of nonlinear evolution equations, unifying the homogeneous balance method, the mapping method, the tanh-function method, the F-expansion method and the exp-function method."],"publicationDate":"2017-11-30","publisher":"Springer Science and Business Media LLC","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Optical and Quantum Electronics","issnPrinted":"0306-8919","issnOnline":"1572-817X","issnLinking":null,"ep":null,"iss":null,"sp":null,"vol":"50","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::636727f299fd9e4d7f580206ec431520","originalIds":["1270","10.1007/s11082-017-1270-6","50|doiboost____|636727f299fd9e4d7f580206ec431520","2772016231"],"pids":[{"scheme":"doi","value":"10.1007/s11082-017-1270-6"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":21,"influence":3.845004e-9,"popularity":1.6314932e-8,"impulse":4,"citationClass":"C4","influenceClass":"C4","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1007/s11082-017-1270-6"}],"license":"Springer TDM","type":"Article","urls":["https://doi.org/10.1007/s11082-017-1270-6"],"publicationDate":"2017-11-30","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2772016231"},{"scheme":"doi","value":"10.1007/s11082-017-1270-6"}],"type":"Article","urls":["https://dx.doi.org/10.1007/s11082-017-1270-6"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar