Yayın:
The analysis of conservation laws, symmetries and solitary wave solutions of Burgers–Fisher equation

dc.contributor.authorAkbulut, Arzu
dc.contributor.authorTaşcan, Fi̇li̇z
dc.contributor.authorKumar, Dipankar
dc.contributor.authorKaplan, Melike
dc.date.accessioned2026-01-04T15:39:52Z
dc.date.issued2021-08-17
dc.description.abstractIn this paper, the conservation laws, significant symmetries’ application, and traveling wave solutions are obtained for Burger–Fisher equation (BFE). Conservation laws have a great importance for partial and fractional differential equations and their solutions, especially in physics implementations. The conservation theorem and partial Noether approach are implemented for conservation laws for this equation, and the extended sinh-Gordon expansion method (esGEM) is presented for new solitary wave solutions. All obtained conservation laws are trivial conservation laws. The new and comprehensive solitary wave solutions of the equation by the esGEM are also obtained.
dc.description.urihttps://doi.org/10.1142/s0217979221502246
dc.description.urihttps://zbmath.org/7503799
dc.description.urihttps://dx.doi.org/10.1142/s0217979221502246
dc.description.urihttps://avesis.uludag.edu.tr/publication/details/fcf43e10-817d-4338-ad37-f2e1026da4ef/oai
dc.identifier.doi10.1142/s0217979221502246
dc.identifier.eissn1793-6578
dc.identifier.issn0217-9792
dc.identifier.openairedoi_dedup___::beb0c7d0a208198a79d09a3469a4f388
dc.identifier.orcid0000-0003-2448-2481
dc.identifier.orcid0000-0003-2949-166x
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85113345227
dc.identifier.urihttps://hdl.handle.net/20.500.12597/38980
dc.identifier.volume35
dc.identifier.wos000700902500008
dc.language.isoeng
dc.publisherWorld Scientific Pub Co Pte Ltd
dc.relation.ispartofInternational Journal of Modern Physics B
dc.rightsCLOSED
dc.subjectconservation theorem
dc.subjectBurgers-Fisher equation
dc.subjectSoliton solutions
dc.subjectextended sinh-Gordon expansion method
dc.subjectpartial Noether approach
dc.subjectSymmetries, invariants, etc. in context of PDEs
dc.subjectSolutions to PDEs in closed form
dc.subjectTraveling wave solutions
dc.titleThe analysis of conservation laws, symmetries and solitary wave solutions of Burgers–Fisher equation
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Akbulut, ARZU","name":"Arzu","surname":"Akbulut","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2448-2481"},"provenance":null}},{"fullName":"TAŞCAN, FİLİZ","name":"Fi̇li̇z","surname":"Taşcan","rank":2,"pid":null},{"fullName":"Kumar, Dipankar","name":"Dipankar","surname":"Kumar","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2949-166x"},"provenance":null}},{"fullName":"Kaplan, Melike","name":"Melike","surname":"Kaplan","rank":4,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"conservation theorem"},"provenance":null},{"subject":{"scheme":"keyword","value":"Burgers-Fisher equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Soliton solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"extended sinh-Gordon expansion method"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"partial Noether approach"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Symmetries, invariants, etc. in context of PDEs"},"provenance":null},{"subject":{"scheme":"keyword","value":"Solutions to PDEs in closed form"},"provenance":null},{"subject":{"scheme":"keyword","value":"Traveling wave solutions"},"provenance":null}],"mainTitle":"The analysis of conservation laws, symmetries and solitary wave solutions of Burgers–Fisher equation","subTitle":null,"descriptions":["<jats:p>In this paper, the conservation laws, significant symmetries’ application, and traveling wave solutions are obtained for Burger–Fisher equation (BFE). Conservation laws have a great importance for partial and fractional differential equations and their solutions, especially in physics implementations. The conservation theorem and partial Noether approach are implemented for conservation laws for this equation, and the extended sinh-Gordon expansion method (esGEM) is presented for new solitary wave solutions. All obtained conservation laws are trivial conservation laws. The new and comprehensive solitary wave solutions of the equation by the esGEM are also obtained.</jats:p>"],"publicationDate":"2021-08-17","publisher":"World Scientific Pub Co Pte Ltd","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"International Journal of Modern Physics B","issnPrinted":"0217-9792","issnOnline":"1793-6578","issnLinking":null,"ep":null,"iss":null,"sp":null,"vol":"35","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::beb0c7d0a208198a79d09a3469a4f388","originalIds":["10.1142/S0217979221502246","10.1142/s0217979221502246","50|doiboost____|beb0c7d0a208198a79d09a3469a4f388","50|c2b0b933574d::c92dea29257955f0ac89fe5f6d5b7ca3","oai:zbmath.org:7503799","3194395000","50|od______9458::c1aa24d09671ba7e5b9c1f68ef0d4b0a","fcf43e10-817d-4338-ad37-f2e1026da4ef"],"pids":[{"scheme":"doi","value":"10.1142/s0217979221502246"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":7,"influence":2.9131788e-9,"popularity":7.544635e-9,"impulse":7,"citationClass":"C5","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1142/s0217979221502246"}],"type":"Article","urls":["https://doi.org/10.1142/s0217979221502246"],"publicationDate":"2021-08-17","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1142/s0217979221502246"}],"type":"Article","urls":["https://zbmath.org/7503799","https://doi.org/10.1142/s0217979221502246"],"publicationDate":"2021-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1142/s0217979221502246"},{"scheme":"mag_id","value":"3194395000"}],"type":"Article","urls":["https://dx.doi.org/10.1142/s0217979221502246"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1142/s0217979221502246"}],"type":"Article","urls":["https://avesis.uludag.edu.tr/publication/details/fcf43e10-817d-4338-ad37-f2e1026da4ef/oai"],"publicationDate":"2021-09-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar