Yayın: Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation
| dc.contributor.author | Alqahtani, Rubayyi T. | |
| dc.contributor.author | Kaplan, Melike | |
| dc.date.accessioned | 2026-01-04T20:07:35Z | |
| dc.date.issued | 2024-02-29 | |
| dc.description.abstract | This work focuses on the utilization of the generalized exponential rational function method (GERFM) to analyze wave propagation of the extended (3 + 1)-dimensional Sakovich equation. The demonstrated effectiveness and robustness of the employed method underscore its relevance to a wider spectrum of nonlinear partial differential equations (NPDEs) in physical phenomena. An examination of the physical characteristics of the generated solutions has been conducted through two- and three-dimensional graphical representations. | |
| dc.description.uri | https://doi.org/10.3390/math12050720 | |
| dc.description.uri | https://doaj.org/article/f014afa58df0466f9978f15d399aa56e | |
| dc.identifier.doi | 10.3390/math12050720 | |
| dc.identifier.eissn | 2227-7390 | |
| dc.identifier.openaire | doi_dedup___::a09d2f5614019c22c5aa7a7018b6c633 | |
| dc.identifier.orcid | 0000-0001-5700-9127 | |
| dc.identifier.scopus | 2-s2.0-85187468258 | |
| dc.identifier.startpage | 720 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/41596 | |
| dc.identifier.volume | 12 | |
| dc.identifier.wos | 001180778400001 | |
| dc.language.iso | eng | |
| dc.publisher | MDPI AG | |
| dc.relation.ispartof | Mathematics | |
| dc.rights | OPEN | |
| dc.subject | the extended (3 + 1)-dimensional Sakovich equation | |
| dc.subject | partial differential equations | |
| dc.subject | QA1-939 | |
| dc.subject | exact solutions | |
| dc.subject | symbolic computation | |
| dc.subject | Mathematics | |
| dc.title | Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Rubayyi T. Alqahtani","name":"Rubayyi T.","surname":"Alqahtani","rank":1,"pid":null},{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"the extended (3 + 1)-dimensional Sakovich equation"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"partial differential equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"exact solutions"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"symbolic computation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation","subTitle":null,"descriptions":["<jats:p>This work focuses on the utilization of the generalized exponential rational function method (GERFM) to analyze wave propagation of the extended (3 + 1)-dimensional Sakovich equation. The demonstrated effectiveness and robustness of the employed method underscore its relevance to a wider spectrum of nonlinear partial differential equations (NPDEs) in physical phenomena. An examination of the physical characteristics of the generated solutions has been conducted through two- and three-dimensional graphical representations.</jats:p>"],"publicationDate":"2024-02-29","publisher":"MDPI AG","embargoEndDate":null,"sources":["Crossref","Mathematics, Vol 12, Iss 5, p 720 (2024)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematics","issnPrinted":null,"issnOnline":"2227-7390","issnLinking":null,"ep":null,"iss":null,"sp":"720","vol":"12","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::a09d2f5614019c22c5aa7a7018b6c633","originalIds":["math12050720","10.3390/math12050720","50|doiboost____|a09d2f5614019c22c5aa7a7018b6c633","50|doajarticles::c9b68c7fb6d96dffd494d7cf6136e2dd","oai:doaj.org/article:f014afa58df0466f9978f15d399aa56e"],"pids":[{"scheme":"doi","value":"10.3390/math12050720"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":4,"influence":2.658433e-9,"popularity":5.5665836e-9,"impulse":4,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3390/math12050720"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.3390/math12050720"],"publicationDate":"2024-02-29","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3390/math12050720"}],"type":"Article","urls":["https://doaj.org/article/f014afa58df0466f9978f15d399aa56e"],"publicationDate":"2024-02-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
