Yayın:
Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation

dc.contributor.authorAlqahtani, Rubayyi T.
dc.contributor.authorKaplan, Melike
dc.date.accessioned2026-01-04T20:07:35Z
dc.date.issued2024-02-29
dc.description.abstractThis work focuses on the utilization of the generalized exponential rational function method (GERFM) to analyze wave propagation of the extended (3 + 1)-dimensional Sakovich equation. The demonstrated effectiveness and robustness of the employed method underscore its relevance to a wider spectrum of nonlinear partial differential equations (NPDEs) in physical phenomena. An examination of the physical characteristics of the generated solutions has been conducted through two- and three-dimensional graphical representations.
dc.description.urihttps://doi.org/10.3390/math12050720
dc.description.urihttps://doaj.org/article/f014afa58df0466f9978f15d399aa56e
dc.identifier.doi10.3390/math12050720
dc.identifier.eissn2227-7390
dc.identifier.openairedoi_dedup___::a09d2f5614019c22c5aa7a7018b6c633
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85187468258
dc.identifier.startpage720
dc.identifier.urihttps://hdl.handle.net/20.500.12597/41596
dc.identifier.volume12
dc.identifier.wos001180778400001
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofMathematics
dc.rightsOPEN
dc.subjectthe extended (3 + 1)-dimensional Sakovich equation
dc.subjectpartial differential equations
dc.subjectQA1-939
dc.subjectexact solutions
dc.subjectsymbolic computation
dc.subjectMathematics
dc.titleAnalyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Rubayyi T. Alqahtani","name":"Rubayyi T.","surname":"Alqahtani","rank":1,"pid":null},{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"the extended (3 + 1)-dimensional Sakovich equation"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"partial differential equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"exact solutions"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"symbolic computation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation","subTitle":null,"descriptions":["<jats:p>This work focuses on the utilization of the generalized exponential rational function method (GERFM) to analyze wave propagation of the extended (3 + 1)-dimensional Sakovich equation. The demonstrated effectiveness and robustness of the employed method underscore its relevance to a wider spectrum of nonlinear partial differential equations (NPDEs) in physical phenomena. An examination of the physical characteristics of the generated solutions has been conducted through two- and three-dimensional graphical representations.</jats:p>"],"publicationDate":"2024-02-29","publisher":"MDPI AG","embargoEndDate":null,"sources":["Crossref","Mathematics, Vol 12, Iss 5, p 720 (2024)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematics","issnPrinted":null,"issnOnline":"2227-7390","issnLinking":null,"ep":null,"iss":null,"sp":"720","vol":"12","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::a09d2f5614019c22c5aa7a7018b6c633","originalIds":["math12050720","10.3390/math12050720","50|doiboost____|a09d2f5614019c22c5aa7a7018b6c633","50|doajarticles::c9b68c7fb6d96dffd494d7cf6136e2dd","oai:doaj.org/article:f014afa58df0466f9978f15d399aa56e"],"pids":[{"scheme":"doi","value":"10.3390/math12050720"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":4,"influence":2.658433e-9,"popularity":5.5665836e-9,"impulse":4,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3390/math12050720"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.3390/math12050720"],"publicationDate":"2024-02-29","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3390/math12050720"}],"type":"Article","urls":["https://doaj.org/article/f014afa58df0466f9978f15d399aa56e"],"publicationDate":"2024-02-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar