Yayın:
Diophantine equations on cross-multiplicative forms of the Pell and Pell-Lucas numbers

dc.contributor.authorEmin, Ahmet
dc.contributor.authorDaşdemir, Ahmet
dc.date.accessioned2026-01-04T22:15:53Z
dc.date.issued2025-07-15
dc.description.abstractThis study aims to explore all Pell numbers that are the product of two random Pell-Lucas numbers and all Pell-Lucas numbers that are the product of two random Pell numbers based on linear forms in logarithms of algebraic numbers using Matveev's theorem and Dujella - Pethő reduction lemma. Further, we find all the common terms of Pell and Pell-Lucas numbers and show that no Pell and no Pell-Lucas numbers can be written as a square of another.
dc.description.urihttps://doi.org/10.25092/baunfbed.1554641
dc.identifier.doi10.25092/baunfbed.1554641
dc.identifier.endpage474
dc.identifier.issn1301-7985
dc.identifier.openairedoi_________::0c880edadafe92c10feb84b15b490387
dc.identifier.orcid0000-0001-7791-7181
dc.identifier.orcid0000-0001-8352-2020
dc.identifier.startpage464
dc.identifier.urihttps://hdl.handle.net/20.500.12597/42854
dc.identifier.volume27
dc.publisherBalikesir Universitesi Fen Bilimleri Enstitusu Dergisi
dc.relation.ispartofBalıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
dc.rightsOPEN
dc.titleDiophantine equations on cross-multiplicative forms of the Pell and Pell-Lucas numbers
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Ahmet Emin","name":"Ahmet","surname":"Emin","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7791-7181"},"provenance":null}},{"fullName":"Ahmet Daşdemir","name":"Ahmet","surname":"Daşdemir","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-8352-2020"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":null,"mainTitle":"Diophantine equations on cross-multiplicative forms of the Pell and Pell-Lucas numbers","subTitle":null,"descriptions":["<jats:p xml:lang=\"en\">This study aims to explore all Pell numbers that are the product of two random Pell-Lucas numbers and all Pell-Lucas numbers that are the product of two random Pell numbers based on linear forms in logarithms of algebraic numbers using Matveev's theorem and Dujella - Pethő reduction lemma. Further, we find all the common terms of Pell and Pell-Lucas numbers and show that no Pell and no Pell-Lucas numbers can be written as a square of another.</jats:p>"],"publicationDate":"2025-07-15","publisher":"Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","issnPrinted":"1301-7985","issnOnline":null,"issnLinking":null,"ep":"474","iss":null,"sp":"464","vol":"27","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_________::0c880edadafe92c10feb84b15b490387","originalIds":["10.25092/baunfbed.1554641","50|doiboost____|0c880edadafe92c10feb84b15b490387"],"pids":[{"scheme":"doi","value":"10.25092/baunfbed.1554641"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":2.8669784e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.25092/baunfbed.1554641"}],"type":"Article","urls":["https://doi.org/10.25092/baunfbed.1554641"],"publicationDate":"2025-07-15","refereed":"peerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire

Dosyalar

Koleksiyonlar