Yayın:
Different Types of Progressive Wave Solutions via the 2D-Chiral Nonlinear Schrödinger Equation

dc.contributor.authorOsman, M. S.
dc.contributor.authorOsman, M. S.
dc.contributor.authorDumitru Baleanu
dc.contributor.authorDumitru Baleanu
dc.contributor.authorDumitru Baleanu
dc.contributor.authorKalim Ul-Haq Tariq
dc.contributor.authorMelike Kaplan
dc.contributor.authorMuhammad Younis
dc.contributor.authorSyed Tahir Raza Rizvi
dc.date.accessioned2026-01-04T14:20:15Z
dc.date.issued2020-07-07
dc.description.abstractUn gadget d'intégration polyvalent, à savoir la technique de sous-équation de ventilateur prolongée (ou étendue) (PFS-E), est consacré à la récupération d'une variété de solutions pour différents modèles dans de nombreux domaines des sciences. Cet essai traite de la dynamique des solutions d'ondes progressives via l'équation de Schrödinger non linéaire 2D-chirale (2D-CNLS). Les solutions acquises comprennent des solitons optiques sombres, des solitons périodiques, des solitons sombres (brillants) singuliers et des solutions périodiques singulières. En émulant les résultats obtenus dans ce travail avec d'autres publications, on peut remarquer que la méthode PFS-E est une technique de bon augure pour trouver des solutions à d'autres problèmes similaires. De plus, il a révélé de nouveaux types de solutions qui nous aideront à mieux comprendre les comportements dynamiques du modèle 2D-CNLS.
dc.description.abstractUn gadget de integración versátil, a saber, la técnica de subecuación de ventilador prolongada (o extendida) (PFS-E), se dedica a recuperar una variedad de soluciones para diferentes modelos en muchos campos de las ciencias. Este ensayo trata la dinámica de las soluciones de onda progresiva a través de la ecuación de Schrödinger no lineal quiral 2D (2D-CNLS). Las soluciones adquiridas comprenden solitones ópticos oscuros, solitones periódicos, solitones oscuros (brillantes) singulares y soluciones periódicas singulares. Al emular los resultados obtenidos en este trabajo con otra literatura, se puede observar que el método PFS-E es una técnica auspiciosa para encontrar soluciones a otros problemas similares. Además, reveló algunos nuevos tipos de soluciones que nos ayudarán a comprender mejor los comportamientos dinámicos del modelo 2D-CNLS.
dc.description.abstractA versatile integration gadget namely the protracted (or extended) Fan sub-equation (PFS-E) technique is devoted to retrieving a variety of solutions for different models in many fields of the sciences. This essay treatises the dynamics of progressive wave solutions via the 2D-chiral nonlinear Schrödinger (2D-CNLS) equation. The acquired solutions comprise of dark optical solitons, periodic solitons, singular dark (bright) solitons, and singular periodic solutions. By emulating the results gained in this work with other literature it can be noticed that the PFS-E method is an auspicious technique for finding solutions to other similar problems. Furthermore, it revealed some new types of solutions that will help us better understand the dynamic behaviors of the 2D-CNLS model.
dc.description.abstractتم تخصيص أداة تكامل متعددة الاستخدامات وهي تقنية المعادلة الفرعية المطولة (أو الموسعة) للمروحة (PFS - E) لاسترداد مجموعة متنوعة من الحلول لنماذج مختلفة في العديد من مجالات العلوم. يتناول هذا المقال ديناميكيات حلول الموجات التقدمية عبر معادلة شرودنغر غير الخطية ثنائية الأبعاد (2D - CNLS). تتكون الحلول المكتسبة من عوازل بصرية داكنة، وعوازل دورية، وعوازل داكنة (ساطعة) مفردة، وحلول دورية مفردة. من خلال محاكاة النتائج المكتسبة في هذا العمل مع الأدبيات الأخرى، يمكن ملاحظة أن طريقة PFS - E هي تقنية ميمونة لإيجاد حلول لمشاكل أخرى مماثلة. علاوة على ذلك، كشفت عن بعض الأنواع الجديدة من الحلول التي ستساعدنا على فهم السلوكيات الديناميكية لنموذج 2D - CNLS بشكل أفضل.
dc.description.urihttps://doi.org/10.3389/fphy.2020.00215
dc.description.urihttps://www.frontiersin.org/articles/10.3389/fphy.2020.00215/pdf
dc.description.urihttps://dx.doi.org/10.60692/8amnh-b9q33
dc.description.urihttps://dx.doi.org/10.60692/ad4rw-8ss63
dc.description.urihttps://doaj.org/article/ee85d573ea6042fb9f9c83ba012d2196
dc.description.urihttps://dx.doi.org/10.3389/fphy.2020.00215
dc.identifier.doi10.3389/fphy.2020.00215
dc.identifier.eissn2296-424X
dc.identifier.openairedoi_dedup___::5477a584f3bcc422e9759283cd297ef7
dc.identifier.orcid0000-0002-5783-0940
dc.identifier.orcid0000-0003-0300-6515
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85088484638
dc.identifier.urihttps://hdl.handle.net/20.500.12597/38106
dc.identifier.volume8
dc.identifier.wos000554478000001
dc.publisherFrontiers Media SA
dc.relation.ispartofFrontiers in Physics
dc.rightsOPEN
dc.subjectArtificial intelligence
dc.subjectQC1-999
dc.subjectVariety (cybernetics)
dc.subjectPeriodic Wave Solutions
dc.subjectQuantum mechanics
dc.subjectOptical Frequency Combs and Ultrafast Lasers
dc.subjectwaves structures
dc.subjectDiscrete Solitons in Nonlinear Photonic Systems
dc.subjectNonlinear Photonic Systems
dc.subjectsolitons
dc.subjectNonlinear Schrödinger equation
dc.subjectFOS: Mathematics
dc.subjectNonlinear Schrödinger Equation
dc.subjectNonlinear Equations
dc.subjectPFS-E algorithm
dc.subjectPhysics
dc.subjectStatistical and Nonlinear Physics
dc.subjectApplied mathematics
dc.subjectPeriodic wave
dc.subjectComputer science
dc.subjectAtomic and Molecular Physics, and Optics
dc.subjectanalytical solutions
dc.subjectGadget
dc.subjectAlgorithm
dc.subjectPhysics and Astronomy
dc.subjectPhysical Sciences
dc.subjectNonlinear system
dc.subjectD-CNLS equation
dc.subjectNonlinear Optics
dc.subjectMathematics
dc.subjectRogue Waves in Nonlinear Systems
dc.titleDifferent Types of Progressive Wave Solutions via the 2D-Chiral Nonlinear Schrödinger Equation
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"M. S. Osman","name":"M. S.","surname":"Osman","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0002-5783-0940"},"provenance":null}},{"fullName":"M. S. Osman","name":"M. S.","surname":"Osman","rank":2,"pid":null},{"fullName":"Dumitru Baleanu","name":null,"surname":null,"rank":3,"pid":null},{"fullName":"Dumitru Baleanu","name":null,"surname":null,"rank":4,"pid":null},{"fullName":"Dumitru Baleanu","name":null,"surname":null,"rank":5,"pid":null},{"fullName":"Kalim Ul-Haq Tariq","name":null,"surname":null,"rank":6,"pid":{"id":{"scheme":"orcid","value":"0000-0003-0300-6515"},"provenance":null}},{"fullName":"Melike Kaplan","name":null,"surname":null,"rank":7,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Muhammad Younis","name":null,"surname":null,"rank":8,"pid":null},{"fullName":"Syed Tahir Raza Rizvi","name":null,"surname":null,"rank":9,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Artificial intelligence"},"provenance":null},{"subject":{"scheme":"keyword","value":"QC1-999"},"provenance":null},{"subject":{"scheme":"keyword","value":"Variety (cybernetics)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Periodic Wave Solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Quantum mechanics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Optical Frequency Combs and Ultrafast Lasers"},"provenance":null},{"subject":{"scheme":"keyword","value":"waves structures"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete Solitons in Nonlinear Photonic Systems"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear Photonic Systems"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"solitons"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear Schrödinger equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"FOS: Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear Schrödinger Equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear Equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"PFS-E algorithm"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Statistical and Nonlinear Physics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Applied mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Periodic wave"},"provenance":null},{"subject":{"scheme":"keyword","value":"Computer science"},"provenance":null},{"subject":{"scheme":"keyword","value":"Atomic and Molecular Physics, and Optics"},"provenance":null},{"subject":{"scheme":"keyword","value":"analytical solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Gadget"},"provenance":null},{"subject":{"scheme":"keyword","value":"Algorithm"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physics and Astronomy"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physical Sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear system"},"provenance":null},{"subject":{"scheme":"keyword","value":"2D-CNLS equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear Optics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Rogue Waves in Nonlinear Systems"},"provenance":null}],"mainTitle":"Different Types of Progressive Wave Solutions via the 2D-Chiral Nonlinear Schrödinger Equation","subTitle":null,"descriptions":["Un gadget d'intégration polyvalent, à savoir la technique de sous-équation de ventilateur prolongée (ou étendue) (PFS-E), est consacré à la récupération d'une variété de solutions pour différents modèles dans de nombreux domaines des sciences. Cet essai traite de la dynamique des solutions d'ondes progressives via l'équation de Schrödinger non linéaire 2D-chirale (2D-CNLS). Les solutions acquises comprennent des solitons optiques sombres, des solitons périodiques, des solitons sombres (brillants) singuliers et des solutions périodiques singulières. En émulant les résultats obtenus dans ce travail avec d'autres publications, on peut remarquer que la méthode PFS-E est une technique de bon augure pour trouver des solutions à d'autres problèmes similaires. De plus, il a révélé de nouveaux types de solutions qui nous aideront à mieux comprendre les comportements dynamiques du modèle 2D-CNLS.","Un gadget de integración versátil, a saber, la técnica de subecuación de ventilador prolongada (o extendida) (PFS-E), se dedica a recuperar una variedad de soluciones para diferentes modelos en muchos campos de las ciencias. Este ensayo trata la dinámica de las soluciones de onda progresiva a través de la ecuación de Schrödinger no lineal quiral 2D (2D-CNLS). Las soluciones adquiridas comprenden solitones ópticos oscuros, solitones periódicos, solitones oscuros (brillantes) singulares y soluciones periódicas singulares. Al emular los resultados obtenidos en este trabajo con otra literatura, se puede observar que el método PFS-E es una técnica auspiciosa para encontrar soluciones a otros problemas similares. Además, reveló algunos nuevos tipos de soluciones que nos ayudarán a comprender mejor los comportamientos dinámicos del modelo 2D-CNLS.","A versatile integration gadget namely the protracted (or extended) Fan sub-equation (PFS-E) technique is devoted to retrieving a variety of solutions for different models in many fields of the sciences. This essay treatises the dynamics of progressive wave solutions via the 2D-chiral nonlinear Schrödinger (2D-CNLS) equation. The acquired solutions comprise of dark optical solitons, periodic solitons, singular dark (bright) solitons, and singular periodic solutions. By emulating the results gained in this work with other literature it can be noticed that the PFS-E method is an auspicious technique for finding solutions to other similar problems. Furthermore, it revealed some new types of solutions that will help us better understand the dynamic behaviors of the 2D-CNLS model.","تم تخصيص أداة تكامل متعددة الاستخدامات وهي تقنية المعادلة الفرعية المطولة (أو الموسعة) للمروحة (PFS - E) لاسترداد مجموعة متنوعة من الحلول لنماذج مختلفة في العديد من مجالات العلوم. يتناول هذا المقال ديناميكيات حلول الموجات التقدمية عبر معادلة شرودنغر غير الخطية ثنائية الأبعاد (2D - CNLS). تتكون الحلول المكتسبة من عوازل بصرية داكنة، وعوازل دورية، وعوازل داكنة (ساطعة) مفردة، وحلول دورية مفردة. من خلال محاكاة النتائج المكتسبة في هذا العمل مع الأدبيات الأخرى، يمكن ملاحظة أن طريقة PFS - E هي تقنية ميمونة لإيجاد حلول لمشاكل أخرى مماثلة. علاوة على ذلك، كشفت عن بعض الأنواع الجديدة من الحلول التي ستساعدنا على فهم السلوكيات الديناميكية لنموذج 2D - CNLS بشكل أفضل."],"publicationDate":"2020-07-07","publisher":"Frontiers Media SA","embargoEndDate":null,"sources":["Crossref","Frontiers in Physics, Vol 8 (2020)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Frontiers in Physics","issnPrinted":null,"issnOnline":"2296-424X","issnLinking":null,"ep":null,"iss":null,"sp":null,"vol":"8","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::5477a584f3bcc422e9759283cd297ef7","originalIds":["10.3389/fphy.2020.00215","50|doiboost____|5477a584f3bcc422e9759283cd297ef7","50|datacite____::a7e2937046bd599f3cfed066b0bcb724","10.60692/8amnh-b9q33","50|datacite____::dc18376dd719e945635e4c4e696d564d","10.60692/ad4rw-8ss63","50|doajarticles::3c61a4a375790c766e999dfcc044332b","oai:doaj.org/article:ee85d573ea6042fb9f9c83ba012d2196","3040703308"],"pids":[{"scheme":"doi","value":"10.3389/fphy.2020.00215"},{"scheme":"doi","value":"10.60692/8amnh-b9q33"},{"scheme":"doi","value":"10.60692/ad4rw-8ss63"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":43,"influence":4.4202424e-9,"popularity":3.5221117e-8,"impulse":32,"citationClass":"C4","influenceClass":"C4","impulseClass":"C3","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3389/fphy.2020.00215"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.3389/fphy.2020.00215"],"publicationDate":"2020-07-07","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.3389/fphy.2020.00215"}],"license":"CC BY","type":"Article","urls":["https://www.frontiersin.org/articles/10.3389/fphy.2020.00215/pdf"],"refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.60692/8amnh-b9q33"}],"type":"Other literature type","urls":["https://dx.doi.org/10.60692/8amnh-b9q33"],"publicationDate":"2020-07-07","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.60692/ad4rw-8ss63"}],"type":"Other literature type","urls":["https://dx.doi.org/10.60692/ad4rw-8ss63"],"publicationDate":"2020-07-07","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3389/fphy.2020.00215"}],"type":"Article","urls":["https://doaj.org/article/ee85d573ea6042fb9f9c83ba012d2196"],"publicationDate":"2020-07-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3389/fphy.2020.00215"},{"scheme":"mag_id","value":"3040703308"}],"type":"Article","urls":["https://dx.doi.org/10.3389/fphy.2020.00215"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar