Yayın: Embedding an edge‐coloring of K(nr;λ1,λ2) into a Hamiltonian decomposition of K(nr+2;λ1,λ2)
| dc.contributor.author | Demir, Mustafa | |
| dc.contributor.author | Rodger, C. A. | |
| dc.date.accessioned | 2026-01-04T12:58:00Z | |
| dc.date.issued | 2019-07-12 | |
| dc.description.abstract | AbstractThis paper focuses on graph decompositions of , the ‐partite multigraph in which each part has size , where two vertices in the same part or different parts are joined by exactly edges or edges respectively. Assuming one condition, necessary and sufficient conditions are found to embed a k‐edge‐coloring of into a Hamiltonian decomposition of . In the tightest case, this assumption is in fact proved to be a new necessary condition. Unlike previous results, of particular interest here is a necessary condition involving the existence of certain components in a related bipartite graph. | |
| dc.description.uri | https://doi.org/10.1002/jgt.22468 | |
| dc.description.uri | https://dx.doi.org/10.1002/jgt.22468 | |
| dc.identifier.doi | 10.1002/jgt.22468 | |
| dc.identifier.eissn | 1097-0118 | |
| dc.identifier.endpage | 63 | |
| dc.identifier.issn | 0364-9024 | |
| dc.identifier.openaire | doi_dedup___::e3f647530f872771bb346330d5eaa569 | |
| dc.identifier.orcid | 0000-0001-7376-5352 | |
| dc.identifier.orcid | 0000-0002-7324-0465 | |
| dc.identifier.scopus | 2-s2.0-85068897998 | |
| dc.identifier.startpage | 49 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/37411 | |
| dc.identifier.volume | 93 | |
| dc.identifier.wos | 000476300600001 | |
| dc.language.iso | eng | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | Journal of Graph Theory | |
| dc.rights | CLOSED | |
| dc.title | Embedding an edge‐coloring of K(nr;λ1,λ2) into a Hamiltonian decomposition of K(nr+2;λ1,λ2) | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Mustafa Demir","name":"Mustafa","surname":"Demir","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7376-5352"},"provenance":null}},{"fullName":"C. A. Rodger","name":"C. A.","surname":"Rodger","rank":2,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-7324-0465"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"0102 computer and information sciences"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"Embedding an edge‐coloring of K(nr;λ1,λ2) into a Hamiltonian decomposition of K(nr+2;λ1,λ2)","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title><jats:p>This paper focuses on graph decompositions of , the ‐partite multigraph in which each part has size , where two vertices in the same part or different parts are joined by exactly edges or edges respectively. Assuming one condition, necessary and sufficient conditions are found to embed a <jats:italic>k</jats:italic>‐edge‐coloring of into a Hamiltonian decomposition of . In the tightest case, this assumption is in fact proved to be a new necessary condition. Unlike previous results, of particular interest here is a necessary condition involving the existence of certain components in a related bipartite graph.</jats:p>"],"publicationDate":"2019-07-12","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Journal of Graph Theory","issnPrinted":"0364-9024","issnOnline":"1097-0118","issnLinking":null,"ep":"63","iss":null,"sp":"49","vol":"93","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::e3f647530f872771bb346330d5eaa569","originalIds":["10.1002/jgt.22468","50|doiboost____|e3f647530f872771bb346330d5eaa569","2961132139"],"pids":[{"scheme":"doi","value":"10.1002/jgt.22468"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":1.2286145e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1002/jgt.22468"}],"license":"Wiley Online Library User Agreement","type":"Article","urls":["https://doi.org/10.1002/jgt.22468"],"publicationDate":"2019-07-12","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2961132139"},{"scheme":"doi","value":"10.1002/jgt.22468"}],"type":"Article","urls":["https://dx.doi.org/10.1002/jgt.22468"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
