Yayın: Flexible circuits in the d‐dimensional rigidity matroid
| dc.contributor.author | Grasegger, Georg | |
| dc.contributor.author | Guler, Hakan | |
| dc.contributor.author | Jackson, Bill | |
| dc.contributor.author | Nixon, Anthony | |
| dc.date.accessioned | 2026-01-04T16:01:10Z | |
| dc.date.issued | 2021-12-06 | |
| dc.description.abstract | AbstractA bar‐joint framework in is rigid if the only edge‐length preserving continuous motions of the vertices arise from isometries of . It is known that, when is generic, its rigidity depends only on the underlying graph , and is determined by the rank of the edge set of in the generic ‐dimensional rigidity matroid . Complete combinatorial descriptions of the rank function of this matroid are known when , and imply that all circuits in are generically rigid in when . Determining the rank function of is a long standing open problem when , and the existence of nonrigid circuits in for is a major contributing factor to why this problem is so difficult. We begin a study of nonrigid circuits by characterising the nonrigid circuits in which have at most vertices. | |
| dc.description.uri | https://doi.org/10.1002/jgt.22780 | |
| dc.description.uri | http://arxiv.org/pdf/2003.06648 | |
| dc.description.uri | https://dx.doi.org/10.48550/arxiv.2003.06648 | |
| dc.description.uri | http://arxiv.org/abs/2003.06648 | |
| dc.description.uri | https://zbmath.org/7746074 | |
| dc.description.uri | https://eprints.lancs.ac.uk/id/eprint/162304/ | |
| dc.description.uri | https://doi.org/https://doi.org/10.1002/jgt.22780 | |
| dc.identifier.doi | 10.1002/jgt.22780 | |
| dc.identifier.eissn | 1097-0118 | |
| dc.identifier.endpage | 330 | |
| dc.identifier.issn | 0364-9024 | |
| dc.identifier.openaire | doi_dedup___::a578afb5539ebc6fe2f3ce669229a6c4 | |
| dc.identifier.orcid | 0000-0001-7421-8115 | |
| dc.identifier.orcid | 0000-0003-3300-860x | |
| dc.identifier.orcid | 0000-0003-0639-1295 | |
| dc.identifier.scopus | 2-s2.0-85143914109 | |
| dc.identifier.startpage | 315 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/39217 | |
| dc.identifier.volume | 100 | |
| dc.identifier.wos | 000726755600001 | |
| dc.language.iso | eng | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | Journal of Graph Theory | |
| dc.rights | OPEN | |
| dc.subject | rigidity matroid | |
| dc.subject | Metric Geometry (math.MG) | |
| dc.subject | Combinatorial aspects of matroids and geometric lattices | |
| dc.subject | rigid graph | |
| dc.subject | C25, 05C10 | |
| dc.subject | Planar graphs | |
| dc.subject | geometric and topological aspects of graph theory | |
| dc.subject | Mathematics - Metric Geometry | |
| dc.subject | Rigidity and flexibility of structures (aspects of discrete geometry) | |
| dc.subject | FOS: Mathematics | |
| dc.subject | bar-joint framework | |
| dc.subject | Mathematics - Combinatorics | |
| dc.subject | Combinatorics (math.CO) | |
| dc.subject | flexible circuit | |
| dc.title | Flexible circuits in the d‐dimensional rigidity matroid | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Georg Grasegger","name":"Georg","surname":"Grasegger","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7421-8115"},"provenance":null}},{"fullName":"Hakan Guler","name":"Hakan","surname":"Guler","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0003-3300-860x"},"provenance":null}},{"fullName":"Bill Jackson","name":"Bill","surname":"Jackson","rank":3,"pid":null},{"fullName":"Anthony Nixon","name":"Anthony","surname":"Nixon","rank":4,"pid":{"id":{"scheme":"orcid","value":"0000-0003-0639-1295"},"provenance":null}}],"openAccessColor":"bronze","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"rigidity matroid"},"provenance":null},{"subject":{"scheme":"keyword","value":"Metric Geometry (math.MG)"},"provenance":null},{"subject":{"scheme":"FOS","value":"0102 computer and information sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Combinatorial aspects of matroids and geometric lattices"},"provenance":null},{"subject":{"scheme":"keyword","value":"rigid graph"},"provenance":null},{"subject":{"scheme":"keyword","value":"52C25, 05C10"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"004"},"provenance":null},{"subject":{"scheme":"keyword","value":"510"},"provenance":null},{"subject":{"scheme":"keyword","value":"Planar graphs; geometric and topological aspects of graph theory"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics - Metric Geometry"},"provenance":null},{"subject":{"scheme":"keyword","value":"Rigidity and flexibility of structures (aspects of discrete geometry)"},"provenance":null},{"subject":{"scheme":"keyword","value":"FOS: Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"bar-joint framework"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics - Combinatorics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Combinatorics (math.CO)"},"provenance":null},{"subject":{"scheme":"keyword","value":"flexible circuit"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null}],"mainTitle":"Flexible circuits in the d‐dimensional rigidity matroid","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title><jats:p>A bar‐joint framework in is rigid if the only edge‐length preserving continuous motions of the vertices arise from isometries of . It is known that, when is generic, its rigidity depends only on the underlying graph , and is determined by the rank of the edge set of in the generic ‐dimensional rigidity matroid . Complete combinatorial descriptions of the rank function of this matroid are known when , and imply that all circuits in are generically rigid in when . Determining the rank function of is a long standing open problem when , and the existence of nonrigid circuits in for is a major contributing factor to why this problem is so difficult. We begin a study of nonrigid circuits by characterising the nonrigid circuits in which have at most vertices.</jats:p>"],"publicationDate":"2021-12-06","publisher":"Wiley","embargoEndDate":"2020-01-01","sources":["Crossref","arXiv.org e-Print Archive"],"formats":["application/xml","text","315 - 330"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Journal of Graph Theory","issnPrinted":"0364-9024","issnOnline":"1097-0118","issnLinking":null,"ep":"330","iss":null,"sp":"315","vol":"100","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::a578afb5539ebc6fe2f3ce669229a6c4","originalIds":["10.1002/jgt.22780","50|doiboost____|5cd81de2fe12c8934d84b229604fa78b","50|datacite____::a578afb5539ebc6fe2f3ce669229a6c4","10.48550/arxiv.2003.06648","oai:arXiv.org:2003.06648","50|od________18::dafa5bb6829c370499a6040781e5fd1a","50|c2b0b933574d::dcc714c55b3beeb57f77308f5f3b90b3","oai:zbmath.org:7746074","oai:eprints.lancs.ac.uk:162304","50|od_______201::e41b13263399a102459f19de16cc7d56","50|userclaim___::3568cb224e9b17c689282c3742c56b09","50|base_oa_____::56a05a8ae4ebf3499f78c68da08657b2","ftulancaster:oai:eprints.lancs.ac.uk:162304","ftqueenmaryuniv:oai:qmro.qmul.ac.uk:123456789/75965","50|base_oa_____::77e6b75e469faa9a814d19104cb9a573"],"pids":[{"scheme":"doi","value":"10.1002/jgt.22780"},{"scheme":"doi","value":"10.48550/arxiv.2003.06648"},{"scheme":"arXiv","value":"2003.06648"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":6,"influence":3.3464913e-9,"popularity":6.4935697e-9,"impulse":6,"citationClass":"C5","influenceClass":"C4","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1002/jgt.22780"}],"license":"Wiley Online Library User Agreement","type":"Article","urls":["https://doi.org/10.1002/jgt.22780"],"publicationDate":"2021-12-06","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1002/jgt.22780"}],"type":"Article","urls":["http://arxiv.org/pdf/2003.06648"],"refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.48550/arxiv.2003.06648"}],"license":"arXiv Non-Exclusive Distribution","type":"Article","urls":["https://dx.doi.org/10.48550/arxiv.2003.06648"],"publicationDate":"2020-01-01","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"arXiv","value":"2003.06648"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/jgt.22780,"},{"scheme":"doi","value":"10.1002/jgt.22918"}],"type":"Preprint","urls":["http://arxiv.org/abs/2003.06648"],"publicationDate":"2020-03-14","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/jgt.22780"}],"type":"Article","urls":["https://zbmath.org/7746074","https://doi.org/10.1002/jgt.22780"],"publicationDate":"2022-01-01","refereed":"nonPeerReviewed"},{"type":"Article","urls":["https://eprints.lancs.ac.uk/id/eprint/162304/"],"publicationDate":"2022-06-30","refereed":"peerReviewed"},{"type":"Preprint","urls":["http://arxiv.org/abs/2003.06648"],"publicationDate":"2020-03-14","refereed":"nonPeerReviewed"},{"license":"CC BY NC","type":"Article","publicationDate":"2022-06-30","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/jgt.22780"}],"type":"Article","urls":["https://doi.org/https://doi.org/10.1002/jgt.22780"],"publicationDate":"2022-01-01","refereed":"nonPeerReviewed"}],"isGreen":true,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
