Yayın: A variational technique for optimal boundary control in a hyperbolic problem
| dc.contributor.author | Sara, Yeşim | |
| dc.contributor.author | Kaar, Ahmet | |
| dc.contributor.author | Subai, Murat | |
| dc.date.accessioned | 2026-01-02T20:05:49Z | |
| dc.date.issued | 2012-02-01 | |
| dc.description.abstract | The authors study the problem of controlling the boundary functions in a one dimensional hyperbolic problem by minimizing the functional including the final state. They prove the existence and uniqueness of the solution of the optimal control problem under consideration and give a necessary condition to the optimal solution by a variational inequality via the solution of the adjoint problem. Finally, they prove that a minimizing sequence defined by the method of projection of the gradient converges to the optimal solution. | |
| dc.description.uri | https://doi.org/10.1016/j.amc.2011.12.053 | |
| dc.description.uri | https://zbmath.org/6047672 | |
| dc.description.uri | https://dx.doi.org/10.1016/j.amc.2011.12.053 | |
| dc.description.uri | https://avesis.atauni.edu.tr/publication/details/f547a37a-91b6-46ce-a415-ea0a50db201d/oai | |
| dc.identifier.doi | 10.1016/j.amc.2011.12.053 | |
| dc.identifier.endpage | 6636 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.openaire | doi_dedup___::6dd555a8731523036700701897617b27 | |
| dc.identifier.scopus | 2-s2.0-84856398987 | |
| dc.identifier.startpage | 6629 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/35575 | |
| dc.identifier.volume | 218 | |
| dc.identifier.wos | 000299847700001 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier BV | |
| dc.relation.ispartof | Applied Mathematics and Computation | |
| dc.rights | CLOSED | |
| dc.subject | Numerical optimization and variational techniques | |
| dc.subject | Discrete approximations in optimal control | |
| dc.subject | hyperbolic problem | |
| dc.subject | variational methods | |
| dc.subject | Existence theories for optimal control problems involving partial differential equations | |
| dc.subject | variational inequality | |
| dc.subject | Variational inequalities | |
| dc.subject | optimal boundary control | |
| dc.title | A variational technique for optimal boundary control in a hyperbolic problem | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Sara, Yeşim","name":"Yeşim","surname":"Sara","rank":1,"pid":null},{"fullName":"Kaar, Ahmet","name":"Ahmet","surname":"Kaar","rank":2,"pid":null},{"fullName":"Subai, Murat","name":"Murat","surname":"Subai","rank":3,"pid":null}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Numerical optimization and variational techniques"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete approximations in optimal control"},"provenance":null},{"subject":{"scheme":"keyword","value":"hyperbolic problem"},"provenance":null},{"subject":{"scheme":"keyword","value":"variational methods"},"provenance":null},{"subject":{"scheme":"keyword","value":"Existence theories for optimal control problems involving partial differential equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"variational inequality"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Variational inequalities"},"provenance":null},{"subject":{"scheme":"keyword","value":"optimal boundary control"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"A variational technique for optimal boundary control in a hyperbolic problem","subTitle":null,"descriptions":["The authors study the problem of controlling the boundary functions in a one dimensional hyperbolic problem by minimizing the functional including the final state. They prove the existence and uniqueness of the solution of the optimal control problem under consideration and give a necessary condition to the optimal solution by a variational inequality via the solution of the adjoint problem. Finally, they prove that a minimizing sequence defined by the method of projection of the gradient converges to the optimal solution."],"publicationDate":"2012-02-01","publisher":"Elsevier BV","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Applied Mathematics and Computation","issnPrinted":"0096-3003","issnOnline":null,"issnLinking":null,"ep":"6636","iss":null,"sp":"6629","vol":"218","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::6dd555a8731523036700701897617b27","originalIds":["S0096300311015402","10.1016/j.amc.2011.12.053","50|doiboost____|6dd555a8731523036700701897617b27","50|c2b0b933574d::8214f0aec4b471210500399b7a5838ed","oai:zbmath.org:6047672","2077042296","50|od______9933::f38735219b6374a0cd5606bf321101b0","f547a37a-91b6-46ce-a415-ea0a50db201d"],"pids":[{"scheme":"doi","value":"10.1016/j.amc.2011.12.053"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.8299483e-9,"popularity":1.5575137e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1016/j.amc.2011.12.053"}],"license":"Elsevier TDM","type":"Article","urls":["https://doi.org/10.1016/j.amc.2011.12.053"],"publicationDate":"2012-02-01","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1016/j.amc.2011.12.053"}],"type":"Article","urls":["https://zbmath.org/6047672","https://doi.org/10.1016/j.amc.2011.12.053"],"publicationDate":"2012-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2077042296"},{"scheme":"doi","value":"10.1016/j.amc.2011.12.053"}],"type":"Article","urls":["https://dx.doi.org/10.1016/j.amc.2011.12.053"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1016/j.amc.2011.12.053"}],"type":"Article","urls":["https://avesis.atauni.edu.tr/publication/details/f547a37a-91b6-46ce-a415-ea0a50db201d/oai"],"publicationDate":"2012-02-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
