Yayın:
New analytical solutions of (2 + 1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques

dc.contributor.authorDipankar, Kumar
dc.contributor.authorMelike, Kaplan
dc.date.accessioned2026-01-04T12:21:42Z
dc.date.issued2018-10-01
dc.description.abstractzbMATH Open Web Interface contents unavailable due to conflicting licenses.
dc.description.urihttps://doi.org/10.1016/j.cjph.2018.09.013
dc.description.urihttps://zbmath.org/7820720
dc.description.urihttps://dx.doi.org/10.1016/j.cjph.2018.09.013
dc.identifier.doi10.1016/j.cjph.2018.09.013
dc.identifier.endpage2185
dc.identifier.issn0577-9073
dc.identifier.openairedoi_dedup___::3ae835bcc02633e91abcd50e694ae2de
dc.identifier.orcid0000-0003-2949-166x
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85054391240
dc.identifier.startpage2173
dc.identifier.urihttps://hdl.handle.net/20.500.12597/36995
dc.identifier.volume56
dc.identifier.wos000449093900039
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofChinese Journal of Physics
dc.rightsCLOSED
dc.subjectconformable fractional derivative
dc.subjectSoliton equations
dc.subjectextended \(\exp(-\Phi(\xi))\)-expansion technique
dc.subjectFractional derivatives and integrals
dc.subjecttime fractional Zoomeron equation
dc.subjectexact solutions
dc.subjectFractional partial differential equations
dc.subjectSolutions to PDEs in closed form
dc.subjectnovel exponential rational function technique
dc.subjectTraveling wave solutions
dc.titleNew analytical solutions of (2 + 1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Kumar, Dipankar","name":"Kumar","surname":"Dipankar","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2949-166x"},"provenance":null}},{"fullName":"Kaplan, Melike","name":"Kaplan","surname":"Melike","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"conformable fractional derivative"},"provenance":null},{"subject":{"scheme":"keyword","value":"Soliton equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"extended \\(\\exp(-\\Phi(\\xi))\\)-expansion technique"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fractional derivatives and integrals"},"provenance":null},{"subject":{"scheme":"keyword","value":"time fractional Zoomeron equation"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"exact solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fractional partial differential equations"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Solutions to PDEs in closed form"},"provenance":null},{"subject":{"scheme":"keyword","value":"novel exponential rational function technique"},"provenance":null},{"subject":{"scheme":"keyword","value":"Traveling wave solutions"},"provenance":null}],"mainTitle":"New analytical solutions of (2 + 1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques","subTitle":null,"descriptions":["zbMATH Open Web Interface contents unavailable due to conflicting licenses."],"publicationDate":"2018-10-01","publisher":"Elsevier BV","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Chinese Journal of Physics","issnPrinted":"0577-9073","issnOnline":null,"issnLinking":null,"ep":"2185","iss":null,"sp":"2173","vol":"56","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::3ae835bcc02633e91abcd50e694ae2de","originalIds":["S0577907317313199","10.1016/j.cjph.2018.09.013","50|doiboost____|3ae835bcc02633e91abcd50e694ae2de","oai:zbmath.org:7820720","50|c2b0b933574d::ecbcc348030f1661f053e1f0c5a8d604","2891893329"],"pids":[{"scheme":"doi","value":"10.1016/j.cjph.2018.09.013"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":36,"influence":4.5822928e-9,"popularity":2.4545283e-8,"impulse":18,"citationClass":"C4","influenceClass":"C4","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1016/j.cjph.2018.09.013"}],"license":"Elsevier TDM","type":"Article","urls":["https://doi.org/10.1016/j.cjph.2018.09.013"],"publicationDate":"2018-10-01","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1016/j.cjph.2018.09.013"}],"type":"Article","urls":["https://doi.org/10.1016/j.cjph.2018.09.013","https://zbmath.org/7820720"],"publicationDate":"2018-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1016/j.cjph.2018.09.013"},{"scheme":"mag_id","value":"2891893329"}],"type":"Article","urls":["https://dx.doi.org/10.1016/j.cjph.2018.09.013"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar