Yayın:
Impact of rice husk ash on physico-mechanical, durability and microstructural features of rubberized lightweight geopolymer composite

dc.contributor.authorBassam, A. Tahey
dc.contributor.authorMütevelli Ozkan, Iffet Gamze
dc.contributor.authorAbdullah, M. Zeyad
dc.contributor.authorBayraktar, Oğuzhan Yavuz
dc.contributor.authorÖz, Ali
dc.contributor.authorKaplan, Gökhan
dc.date.accessioned2026-01-04T20:23:03Z
dc.date.issued2024-05-01
dc.description.abstract<p><span style="color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif; font-size: 16px;">This study investigates the effects of incorporating rice husk ash (RHA) on the characteristics of lightweight geopolymer concrete (LWGC), which includes waste tire aggregate (WTA). This study utilized RHA to replace 15 % of ground blast furnace slag (GBFS) in LWGC. The LWGC also included WTA as a partial substitute for pumice aggregate, with varying rates of 10 %, 25 %, and 50 % by volume. In addition, curing temperatures of 75 °C and 100 °C were utilized for 3 h&nbsp;following the casting process. 16 LWGC blends were created, each with a dry density below 1800 kg/m</span><span style="margin: 0px; padding: 0px; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; top: -0.5em; color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif;">3</span><span style="color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif; font-size: 16px;">. To study the features of hardened LWGC, various tests included apparent porosity, water absorption, capillary water absorption, dry density, compressive and flexural strength. In addition, freezing and thawing cycles (20, 40, and 60 cycles) and elevated temperatures of 250 and 500 °C affect compressive strength and density loss in addition to examining the thermal conductivity coefficient and morphological imaging by SEM on microscopic structure. The results showed that adding 15 % RHA as a partial replacement for GBSF led to a decrease in the density of hardened concrete to about 1561 kg/m</span><span style="margin: 0px; padding: 0px; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; top: -0.5em; color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif;">3</span><span style="color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif; font-size: 16px;">. At the same time, the compressive strength decreased to 24 and 21 MPa for the samples subjected to 75 and 100 °C heat treatments, respectively. Including 15 % RHA also reduced the thermal conductivity coefficient to 0.978 W/mK. Regarding the inclusion of WTA as a substitute for pumice aggregate, it led to a decrease in density and compressive strength as the replacement rate increased. In addition, the thermal conductivity coefficient decreases to its lowest level when WTA replaces 50 % of the pumice.</span><br></p>
dc.description.urihttps://doi.org/10.1016/j.conbuildmat.2024.136265
dc.description.urihttps://avesis.atauni.edu.tr/publication/details/0278be75-99ca-44d0-918c-b7518f19e371/oai
dc.identifier.doi10.1016/j.conbuildmat.2024.136265
dc.identifier.issn0950-0618
dc.identifier.openairedoi_dedup___::60295f488d0a5a19d680c2782892bb8f
dc.identifier.orcid0000-0002-0239-4280
dc.identifier.orcid0000-0003-0023-8249
dc.identifier.orcid0000-0001-6067-7337
dc.identifier.scopus2-s2.0-85190439829
dc.identifier.startpage136265
dc.identifier.urihttps://hdl.handle.net/20.500.12597/41766
dc.identifier.volume427
dc.identifier.wos001231188400001
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofConstruction and Building Materials
dc.rightsCLOSED
dc.titleImpact of rice husk ash on physico-mechanical, durability and microstructural features of rubberized lightweight geopolymer composite
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Bassam, A.Tahey","name":"A. Tahey","surname":"Bassam","rank":1,"pid":null},{"fullName":"Mütevelli Ozkan, Iffet Gamze","name":"Iffet Gamze","surname":"Mütevelli Ozkan","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-0239-4280"},"provenance":null}},{"fullName":"Abdullah, M. Zeyad","name":"M. Zeyad","surname":"Abdullah","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0003-0023-8249"},"provenance":null}},{"fullName":"Bayraktar, Oğuzhan Yavuz","name":"Oğuzhan Yavuz","surname":"Bayraktar","rank":4,"pid":null},{"fullName":"Öz, Ali","name":"Ali","surname":"Öz","rank":5,"pid":null},{"fullName":"Kaplan, Gökhan","name":"Gökhan","surname":"Kaplan","rank":6,"pid":{"id":{"scheme":"orcid","value":"0000-0001-6067-7337"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":null,"mainTitle":"Impact of rice husk ash on physico-mechanical, durability and microstructural features of rubberized lightweight geopolymer composite","subTitle":null,"descriptions":["<p><span style=\"color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif; font-size: 16px;\">This study investigates the effects of incorporating rice husk ash (RHA) on the characteristics of lightweight geopolymer concrete (LWGC), which includes waste tire aggregate (WTA). This study utilized RHA to replace 15 % of ground blast furnace slag (GBFS) in LWGC. The LWGC also included WTA as a partial substitute for pumice aggregate, with varying rates of 10 %, 25 %, and 50 % by volume. In addition, curing temperatures of 75 °C and 100 °C were utilized for 3 h&nbsp;following the casting process. 16 LWGC blends were created, each with a dry density below 1800 kg/m</span><span style=\"margin: 0px; padding: 0px; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; top: -0.5em; color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif;\">3</span><span style=\"color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif; font-size: 16px;\">. To study the features of hardened LWGC, various tests included apparent porosity, water absorption, capillary water absorption, dry density, compressive and flexural strength. In addition, freezing and thawing cycles (20, 40, and 60 cycles) and elevated temperatures of 250 and 500 °C affect compressive strength and density loss in addition to examining the thermal conductivity coefficient and morphological imaging by SEM on microscopic structure. The results showed that adding 15 % RHA as a partial replacement for GBSF led to a decrease in the density of hardened concrete to about 1561 kg/m</span><span style=\"margin: 0px; padding: 0px; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; top: -0.5em; color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif;\">3</span><span style=\"color: rgb(31, 31, 31); font-family: ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif; font-size: 16px;\">. At the same time, the compressive strength decreased to 24 and 21 MPa for the samples subjected to 75 and 100 °C heat treatments, respectively. Including 15 % RHA also reduced the thermal conductivity coefficient to 0.978 W/mK. Regarding the inclusion of WTA as a substitute for pumice aggregate, it led to a decrease in density and compressive strength as the replacement rate increased. In addition, the thermal conductivity coefficient decreases to its lowest level when WTA replaces 50 % of the pumice.</span><br></p>"],"publicationDate":"2024-05-01","publisher":"Elsevier BV","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Construction and Building Materials","issnPrinted":"0950-0618","issnOnline":null,"issnLinking":null,"ep":null,"iss":null,"sp":"136265","vol":"427","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::60295f488d0a5a19d680c2782892bb8f","originalIds":["S0950061824014065","10.1016/j.conbuildmat.2024.136265","50|doiboost____|60295f488d0a5a19d680c2782892bb8f","50|od______9933::b5f1aa68f31834535ca4b68af57e9bf7","0278be75-99ca-44d0-918c-b7518f19e371"],"pids":[{"scheme":"doi","value":"10.1016/j.conbuildmat.2024.136265"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":28,"influence":3.3926484e-9,"popularity":2.4396536e-8,"impulse":28,"citationClass":"C4","influenceClass":"C4","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1016/j.conbuildmat.2024.136265"}],"license":"Elsevier TDM","type":"Article","urls":["https://doi.org/10.1016/j.conbuildmat.2024.136265"],"publicationDate":"2024-05-01","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1016/j.conbuildmat.2024.136265"}],"type":"Article","urls":["https://avesis.atauni.edu.tr/publication/details/0278be75-99ca-44d0-918c-b7518f19e371/oai"],"publicationDate":"2024-05-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar