Yayın:
Fibonacci or Lucas numbers that are products of two Lucas numbers or two Fibonacci numbers

dc.contributor.authorDaşdemir, Ahmet
dc.contributor.authorEmin, Ahmet
dc.date.accessioned2026-01-04T17:46:10Z
dc.date.issued2023-01-01
dc.description.abstractThis contribution presents all possible solutions to the Diophantine equations $F_k=L_mL_n$ and $L_k=F_mF_n$. To be clear, Fibonacci numbers that are the product of two arbitrary Lucas numbers and Lucas numbers that are the product of two arbitrary Fibonacci numbers are determined herein. The results under consideration are proven by using Dujella-Pethö lemma in coordination with Matveev's theorem. All common terms of the Fibonacci and Lucas numbers are determined. Further, the Lucas-square Fibonacci and Fibonacci-square Lucas numbers are given.
dc.description.urihttps://dx.doi.org/10.48550/arxiv.2312.02577
dc.description.urihttp://arxiv.org/abs/2312.02577
dc.identifier.doi10.48550/arxiv.2312.02577
dc.identifier.openairedoi_dedup___::40843fc636583d7bf512e5cf9bc410ae
dc.identifier.urihttps://hdl.handle.net/20.500.12597/40343
dc.publisherarXiv
dc.rightsOPEN
dc.subjectMathematics - Number Theory
dc.subjectFOS: Mathematics
dc.subjectNumber Theory (math.NT)
dc.subjectD61, 11J86, 11B39
dc.titleFibonacci or Lucas numbers that are products of two Lucas numbers or two Fibonacci numbers
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Daşdemir, Ahmet","name":"Ahmet","surname":"Daşdemir","rank":1,"pid":null},{"fullName":"Emin, Ahmet","name":"Ahmet","surname":"Emin","rank":2,"pid":null}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Mathematics - Number Theory"},"provenance":null},{"subject":{"scheme":"keyword","value":"FOS: Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Number Theory (math.NT)"},"provenance":null},{"subject":{"scheme":"keyword","value":"11D61, 11J86, 11B39"},"provenance":null}],"mainTitle":"Fibonacci or Lucas numbers that are products of two Lucas numbers or two Fibonacci numbers","subTitle":null,"descriptions":["This contribution presents all possible solutions to the Diophantine equations $F_k=L_mL_n$ and $L_k=F_mF_n$. To be clear, Fibonacci numbers that are the product of two arbitrary Lucas numbers and Lucas numbers that are the product of two arbitrary Fibonacci numbers are determined herein. The results under consideration are proven by using Dujella-Pethö lemma in coordination with Matveev's theorem. All common terms of the Fibonacci and Lucas numbers are determined. Further, the Lucas-square Fibonacci and Fibonacci-square Lucas numbers are given."],"publicationDate":"2023-01-01","publisher":"arXiv","embargoEndDate":"2023-01-01","sources":null,"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":null,"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::40843fc636583d7bf512e5cf9bc410ae","originalIds":["50|datacite____::40843fc636583d7bf512e5cf9bc410ae","10.48550/arxiv.2312.02577","50|od________18::25120874c0699bea0e55cc44d47fc03c","oai:arXiv.org:2312.02577"],"pids":[{"scheme":"doi","value":"10.48550/arxiv.2312.02577"},{"scheme":"arXiv","value":"2312.02577"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":2.1399287e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.48550/arxiv.2312.02577"}],"license":"CC BY","type":"Article","urls":["https://dx.doi.org/10.48550/arxiv.2312.02577"],"publicationDate":"2023-01-01","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"arXiv","value":"2312.02577"}],"type":"Preprint","urls":["http://arxiv.org/abs/2312.02577"],"publicationDate":"2023-12-05","refereed":"nonPeerReviewed"}],"isGreen":true,"isInDiamondJournal":false}
local.import.sourceOpenAire

Dosyalar

Koleksiyonlar