Yayın: Nonoscillation and oscillation criteria for class of higher - order difference equations involving generalized difference operator
| dc.contributor.author | Nar, Aysun | |
| dc.contributor.author | Bolat, Yaşar | |
| dc.contributor.author | Değer, Serbun Ufuk | |
| dc.contributor.author | Gevgeşoğlu, Murat | |
| dc.date.accessioned | 2026-01-04T16:39:53Z | |
| dc.date.issued | 2022-03-31 | |
| dc.description.abstract | Summary: In this paper, sufficient conditions are obtained for nonoscillation/oscillation of all solutions of a class of higher-order difference equations involving the generalized difference operator of the form \[ \Delta_a^k(p_n\Delta_a^2y_n)=f(n,y_n,\Delta_ay_n,\Delta_a^2y_n,\dots,\Delta_a^{k+1}y_n), \] where \(\Delta_a\) is generalized difference operator which is defined as \(\Delta_ay_n=y_{n+1}-ay_n\), \(a\neq{0}\). | |
| dc.description.uri | https://doi.org/10.31801/cfsuasmas.904804 | |
| dc.description.uri | https://dergipark.org.tr/en/download/article-file/1668275 | |
| dc.description.uri | https://zbmath.org/7545449 | |
| dc.description.uri | https://dergipark.org.tr/tr/pub/cfsuasmas/issue/68411/904804 | |
| dc.description.uri | https://doi.org/https://doi.org/10.31801/cfsuasmas.904804 | |
| dc.description.uri | https://doi.org/https://doi.org/20.500.12575/86471 | |
| dc.identifier.doi | 10.31801/cfsuasmas.904804 | |
| dc.identifier.endpage | 203 | |
| dc.identifier.issn | 1303-5991 | |
| dc.identifier.openaire | doi_dedup___::3f338e26bc2b96f5750a3723f5b1eb08 | |
| dc.identifier.orcid | 0000-0001-9458-8930 | |
| dc.identifier.startpage | 188 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/39593 | |
| dc.identifier.volume | 71 | |
| dc.identifier.wos | 000793009300004 | |
| dc.publisher | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | |
| dc.relation.ispartof | Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics | |
| dc.rights | OPEN | |
| dc.subject | Oscillation theory for difference equations | |
| dc.subject | Difference equations | |
| dc.subject | nonoscillation | |
| dc.subject | Applied Mathematics | |
| dc.subject | Uygulamalı Matematik | |
| dc.subject | Linear difference operators | |
| dc.subject | difference equations | |
| dc.subject | oscillation | |
| dc.subject | generalized difference operator | |
| dc.subject | Difference equations | |
| dc.subject | generalized difference operator | |
| dc.subject | oscillation | |
| dc.subject | nonoscillation | |
| dc.title | Nonoscillation and oscillation criteria for class of higher - order difference equations involving generalized difference operator | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"NAR, Aysun","name":"Aysun","surname":"Nar","rank":1,"pid":null},{"fullName":"BOLAT, Yaşar","name":"Yaşar","surname":"Bolat","rank":2,"pid":null},{"fullName":"DEĞER, Serbun Ufuk","name":"Serbun Ufuk","surname":"Değer","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9458-8930"},"provenance":null}},{"fullName":"GEVGEŞOĞLU, Murat","name":"Murat","surname":"Gevgeşoğlu","rank":4,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Oscillation theory for difference equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Difference equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"nonoscillation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Applied Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Uygulamalı Matematik"},"provenance":null},{"subject":{"scheme":"keyword","value":"Linear difference operators"},"provenance":null},{"subject":{"scheme":"keyword","value":"difference equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"oscillation"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"generalized difference operator"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Difference equations;generalized difference operator;oscillation;nonoscillation"},"provenance":null}],"mainTitle":"Nonoscillation and oscillation criteria for class of higher - order difference equations involving generalized difference operator","subTitle":null,"descriptions":["Summary: In this paper, sufficient conditions are obtained for nonoscillation/oscillation of all solutions of a class of higher-order difference equations involving the generalized difference operator of the form \\[ \\Delta_a^k(p_n\\Delta_a^2y_n)=f(n,y_n,\\Delta_ay_n,\\Delta_a^2y_n,\\dots,\\Delta_a^{k+1}y_n), \\] where \\(\\Delta_a\\) is generalized difference operator which is defined as \\(\\Delta_ay_n=y_{n+1}-ay_n\\), \\(a\\neq{0}\\)."],"publicationDate":"2022-03-31","publisher":"Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics","embargoEndDate":null,"sources":["Crossref","Volume: 71, Issue: 1 188-203","1303-5991","2618-6470","Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics"],"formats":["application/xml","application/pdf"],"contributors":["Other"],"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics","issnPrinted":"1303-5991","issnOnline":null,"issnLinking":null,"ep":"203","iss":null,"sp":"188","vol":"71","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::3f338e26bc2b96f5750a3723f5b1eb08","originalIds":["10.31801/cfsuasmas.904804","50|doiboost____|3f338e26bc2b96f5750a3723f5b1eb08","50|c2b0b933574d::ff4a5acfadbc259bb379dd8d951c1b95","oai:zbmath.org:7545449","oai:dergipark.org.tr:article/904804","50|tubitakulakb::cc907d92dfde01892afa81e50eefdc58","50|base_oa_____::b507c86d09eeb07bd362338ec541ea61","ftankarauniv:oai:dspace.ankara.edu.tr:20.500.12575/86471"],"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.904804"},{"scheme":"handle","value":"20.500.12575/86471"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":1.8548826e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.904804"}],"type":"Article","urls":["https://doi.org/10.31801/cfsuasmas.904804"],"publicationDate":"2022-03-31","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.31801/cfsuasmas.904804"}],"license":"CC BY","type":"Article","urls":["https://dergipark.org.tr/en/download/article-file/1668275"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.904804"}],"type":"Article","urls":["https://doi.org/10.31801/cfsuasmas.904804","https://zbmath.org/7545449"],"publicationDate":"2022-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.904804"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/cfsuasmas/issue/68411/904804"],"publicationDate":"2021-03-28","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"20.500.12575/86471"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.31801/cfsuasmas.904804"}],"type":"Article","urls":["https://doi.org/https://doi.org/10.31801/cfsuasmas.904804","https://doi.org/https://doi.org/20.500.12575/86471"],"publicationDate":"2022-12-26","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS |
