Yayın:
Exploration of New Solitons for the Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model

dc.contributor.authorKaplan, Melike
dc.contributor.authorAlqahtani, Rubayyi T.
dc.date.accessioned2026-01-04T18:48:23Z
dc.date.issued2023-06-03
dc.description.abstractThe key objective of the current manuscript was to investigate the exact solutions of the fractional perturbed Radhakrishnan–Kundu–Lakshmanan model. For this purpose, we applied two reliable and efficient approaches; specifically, the modified simple equation (MSE) and exponential rational function (ERF) techniques. The methods considered in this paper offer solutions for problems in nonlinear theory and mathematical physics practice. We also present solutions obtained graphically with the Maple package program.
dc.description.urihttps://doi.org/10.3390/math11112562
dc.description.urihttps://doaj.org/article/37f513a3180442e6b88f650017d6237a
dc.description.urihttps://dx.doi.org/10.3390/math11112562
dc.identifier.doi10.3390/math11112562
dc.identifier.eissn2227-7390
dc.identifier.openairedoi_dedup___::5ceb8d44c41a94da5ea45971f1d85645
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85161312052
dc.identifier.startpage2562
dc.identifier.urihttps://hdl.handle.net/20.500.12597/40773
dc.identifier.volume11
dc.identifier.wos001005555900001
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofMathematics
dc.rightsOPEN
dc.subjectfractional partial differential equation
dc.subjectexact solutions
dc.subjectfractional partial differential equation
dc.subjectsymbolic computation
dc.subjectmathematical models
dc.subjectnonlinear equations
dc.subjectnonlinear equations
dc.subjectQA1-939
dc.subjectexact solutions
dc.subjectmathematical models
dc.subjectsymbolic computation
dc.subjectMathematics
dc.titleExploration of New Solitons for the Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Rubayyi T. Alqahtani","name":"Rubayyi T.","surname":"Alqahtani","rank":2,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"fractional partial differential equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"exact solutions; fractional partial differential equation; symbolic computation; mathematical models; nonlinear equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"nonlinear equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"exact solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"mathematical models"},"provenance":null},{"subject":{"scheme":"keyword","value":"symbolic computation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Exploration of New Solitons for the Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model","subTitle":null,"descriptions":["<jats:p>The key objective of the current manuscript was to investigate the exact solutions of the fractional perturbed Radhakrishnan–Kundu–Lakshmanan model. For this purpose, we applied two reliable and efficient approaches; specifically, the modified simple equation (MSE) and exponential rational function (ERF) techniques. The methods considered in this paper offer solutions for problems in nonlinear theory and mathematical physics practice. We also present solutions obtained graphically with the Maple package program.</jats:p>"],"publicationDate":"2023-06-03","publisher":"MDPI AG","embargoEndDate":null,"sources":["Crossref","Mathematics, Vol 11, Iss 11, p 2562 (2023)","Mathematics; Volume 11; Issue 11; Pages: 2562"],"formats":["application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematics","issnPrinted":null,"issnOnline":"2227-7390","issnLinking":null,"ep":null,"iss":null,"sp":"2562","vol":"11","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::5ceb8d44c41a94da5ea45971f1d85645","originalIds":["math11112562","10.3390/math11112562","50|doiboost____|5ceb8d44c41a94da5ea45971f1d85645","50|doajarticles::c8efd8731af953b0f91a6efd8c093a53","oai:doaj.org/article:37f513a3180442e6b88f650017d6237a","oai:mdpi.com:/2227-7390/11/11/2562/","50|multidiscipl::991ea809ad16c93b302689e6a4a860f7"],"pids":[{"scheme":"doi","value":"10.3390/math11112562"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":13,"influence":3.1884373e-9,"popularity":1.26828406e-8,"impulse":13,"citationClass":"C4","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3390/math11112562"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.3390/math11112562"],"publicationDate":"2023-06-03","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3390/math11112562"}],"type":"Article","urls":["https://doaj.org/article/37f513a3180442e6b88f650017d6237a"],"publicationDate":"2023-06-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3390/math11112562"}],"license":"CC BY","type":"Other literature type","urls":["https://dx.doi.org/10.3390/math11112562"],"publicationDate":"2023-06-03","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar